博碩士論文 106521123 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.223.213.76
姓名 蔡孟宗(Meng-Zong Cai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於深度學習之缺血性中風磁振造影辨識
(Identification of Ischemic Stroke in MRI Based on Deep Learning)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磁振造影(Magnetic Resonance Imaging,MRI)越來越多地用於診斷腦組織病變,特別是擴散加權(Diffusion Weighted Image,DWI)在檢測缺血性腦中風中具有高度敏感性。然而,MRI會因設備,非自主運動,磁化率及金屬等的產生多種偽影,而這些偽影在DWI影像中的直方圖與梗塞有很大的重疊區域,容易使醫生判斷病人時造成誤判。對於日常臨床使用而言,醫生仍然需要手動或半手動地對腦區域中的病變進行評估,手動評估病理變化太麻煩且耗費時間,也難免受到個人主觀性的影響,然而目前為止提出的數種全自動分割方法中去除偽影與正確率仍保有很大的進步空間。在此項研究中,我們提出了一種基於深度學習的方法,首先取出影像的腦組織,經由旋轉T1加權影像(T1-Weighted Image,T1WI)找出最對稱的旋轉角度,然而將T1 map移位至影像正中心,再將DWI與表觀擴散係(Apparent Diffusion Coefficient,ADC) map對位至T1 map。依每張切片的影像強度,設立自適性門檻值,濾除大部分頭骨與雜訊。判斷小腦的影像平均強度是否與大腦平均強度是否相似,若不相同則會調整小腦平均強度。由於每個人大腦影像強度存在著變異性,所以我們將利用DWI map做線性回歸的方法,提取出梗塞機率較高的區域,並將非線性回歸所得的影像,作為第三種參考依據。將之前對位的DWI與ADC map和非線性回歸影像重疊,再將重疊的影像切割成數個小影像並加入切割的位置資訊、整個大腦的影像平均強度、第幾張切片,最後利用深度學習排除偽影與非梗塞並偵測出梗塞的位置,供醫生參考。該研究對於偽影的辨識,與醫生手動評估的速度上,達到了很好的準確率與速度。
摘要(英) Magnetic resonance imaging (MRI) is highly sensitive to stroke lesions. However,
MRI can produce a variety of artifacts due to equipment, involuntary movement, magnetic susceptibility, and metal. The histograms of these artifact may overlap with those of infact in the DWI image, which causes infarct segmentation errors. In the traditional clinical infarct segmentation, the doctors need to use manual or semi-automated methods to detect infarct lesions in the brain area. These nonautomated methods to assess pathological changes is cumbersome, time-consuming, and easily influenced by the assessor’s personal subjectivity. There is still a lot of room for improvement in removing artifacts and accuracy in the automatic segmentation method. In this study, we propose a cerebral infarct segmentation method based on deep learning. First, the brain tissue of the image is extracted, and the T1-Weighted (T1-W) image is rotated at various angles to find the angle with respect to which the T1-W image is most symmetrical. Then the T1-W image is centralized by a shift, and the DWI and ADC map are registered to T1-W image. Based on the image intensity of each slice, an adaptive threshold is set to filter out most of the skull and noise. The average image intensity of the cerebellum is compared with that of the cerebrum. If the cerebellar intensity is higher than the cerebral intensity, the average intensity of the cerebellum is adjusted to the same level as the cerebral intensity. To accommodate the inter-person variability in the brain image intensity, a new image is generated as the third reference image in addition to the DWI and ADC map. This new image contains regions with a high probability of infarction extracted from the DWI by nonlinear regression. The previously aligned DWI, ADC image, and the non-linear regression image are all divided into patches of 16 × 16 pixels. Each patch is accompanied with the position information of the patch, the average intensity of the entire brain image, and the slice number. A convolutional neural network (CNN) is constructed and trained with the patches of over 30 patients. The trained CNN achieves a good performance in identifying infarct, noninfarct, artifact patches at a high speed.
關鍵字(中) ★ 中風
★ 缺血性中風
★ 梗塞
★ 磁振造影
★ 偽影
★ 深度學習
關鍵字(英) ★ Stroke
★ ischemic stroke
★ infarct
★ MRI
★ artifact
★ deep learning
論文目次 摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VII
第1章 緒論 1
1.1 研究動機 1
1.2 腦中風簡介 2
1.3 文獻回顧 2
1.4 論文架構 4
第2章 核磁造影介紹 5
2.1 磁振造影簡介 5
2.2 核磁造影成像原理 7
2.2.1 淨磁化量 7
2.2.2 偏折角 8
2.2.3 弛豫時間 9
2.2.4 梯度磁場 10
2.2.5 脈衝序列 11
2.2.6 加權影像 12
2.3 梗塞的原理 14
2.4 偽影的產生 15
2.4.1 設備偽影 15
2.4.2 運動偽影 16
2.4.3 磁化率與金屬偽影 16
2.5 梗塞與偽影的差異性 17
第3章 深度學習介紹 19
3.1 深度學習簡介 19
3.1.1 神經元 19
3.1.2 神經網路 20
3.1.3 損失函數 22
3.1.4 學習模型 23
3.2 Convolutional Neural Networks 25
3.2.1 卷積層 27
3.2.2 池化層 27
3.2.3 活化函數 27
3.2.4 全連接層 29
第4章 研究方法 30
4.1 病人數據採集 31
4.2 影像對位 31
4.2.1 影像二值化 32
4.2.2 影像膨脹 34
4.2.3 影像侵蝕 34
4.2.4 影像旋轉和移位 35
4.3 遮罩 37
4.4 小腦與大腦影像強度不均 38
4.5 非線性回歸 39
4.6 CNN訓練 40
4.6.1 切割圖片 41
4.6.2 神經網路架構 42
4.6.3 訓練與測試資料 43
4.6.4 交叉驗證 44
第5章 實驗結果與討論 45
5.1 資料處理與開發環境 45
5.2 實驗步驟 46
5.3 CNN訓練結果 50
5.4 實驗結果 52
5.5 討論 53
第6章 結論與未來展望 54
6.1 結論 54
6.2 未來展望 55
參考文獻 56
參考文獻 [1] (2019). 衛生福利部,107年死因統計年報電子書,衛生福利部. Available: https://dep.mohw.gov.tw/DOS/lp-4472-113.html
[2] J.-Z. Tsai, S.-J. Peng, Y.-W. Chen, K.-W. Wang, H.-K. Wu, Y.-Y. Lin, Y.-Y. Lee, C.-J. Chen, H.-J. Lin, and E. E. J. B. r. i. Smith, ”Automatic detection and quantification of acute cerebral infarct by fuzzy clustering and histographic characterization on diffusion weighted MR imaging and apparent diffusion coefficient map,” BioMed Research International, vol. 2014, 2014.
[3] J. Canny, ”A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 6, pp. 679-698, 1986.
[4] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media, 2013.
[5] P. Anbeek, K. L. Vincken, G. S. Van Bochove, M. J. Van Osch, and J. J. N. van der Grond, ”Probabilistic segmentation of brain tissue in MR imaging,” NeuroImage, vol. 27, no. 4, pp. 795-804, 2005.
[6] P. Anbeek, K. L. Vincken, M. J. van Osch, R. H. Bisschops, and J. J. M. i. a. van der Grond, ”Automatic segmentation of different-sized white matter lesions by voxel probability estimation,” Medical Image Analysis, vol. 8, no. 3, pp. 205-215, 2004.
[7] J.-Z. Tsai, S.-J. Peng, Y.-W. Chen, K.-W. Wang, C.-H. Li, J.-Y. Wang, C.-J. Chen, H.-J. Lin, E. E. Smith, and H.-K. J. P. o. Wu, ”Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with cerebral infarction,” PloS one, vol. 9, no. 8, p. e104011, 2014.
[8] N. P. De La Ossa, M. Hernandez-Perez, S. Domenech, P. Cuadras, A. Massuet, M. Millan, M. Gomis, E. López-Cancio, L. Dorado, and A. J. C. D. Dávalos, ”Hyperintensity of distal vessels on FLAIR is associated with slow progression of the infarction in acute ischemic stroke,” Cerebrovascular Diseases, vol. 34, no. 5-6, pp. 376-384, 2012.
[9] L. Chen, P. Bentley, and D. J. N. C. Rueckert, ”Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks,” NeuroImage, vol. 15, pp. 633-643, 2017.
[10] M. Ghafoorian, N. Karssemeijer, T. Heskes, I. W. van Uden, C. I. Sanchez, G. Litjens, F.-E. de Leeuw, B. van Ginneken, E. Marchiori, and B. J. S. R. Platel, ”Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities,” Scientific Reports, vol. 7, no. 1, p. 5110, 2017.
[11] D. R. Pereira, P. P. Reboucas Filho, G. H. de Rosa, J. P. Papa, and V. H. C. de Albuquerque, ”Stroke lesion detection using convolutional neural networks,” in 2018 International joint conference on neural networks (IJCNN), 2018, pp. 1-6: IEEE.
[12] K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon, D. Rueckert, and B. J. M. i. a. Glocker, ”Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation,” Medical image analysis, vol. 36, pp. 61-78, 2017.
[13] S. Ghosh, P. Boulanger, S. T. Acton, S. S. Blemker, and N. Ray, ”Automated 3D muscle segmentation from MRI data using convolutional neural network,” in 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 4437-4441: IEEE.
[14] H. Vu, H.-C. Kim, and J.-H. Lee, ”3D convolutional neural network for feature extraction and classification of fMRI volumes,” in 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2018, pp. 1-4: IEEE.
[15] S. Kumar, A. Negi, J. Singh, and H. Verma, ”A deep learning for brain tumor mri images semantic segmentation using fcn,” in 2018 4th International Conference on Computing Communication and Automation (ICCCA), 2018, pp. 1-4: IEEE.
[16] Z. Wang, Y. Sun, Q. Shen, and L. J. I. A. Cao, ”Dilated 3D Convolutional Neural Networks for Brain MRI Data Classification,” IEEE Access, vol. 7, pp. 134388-134398, 2019.
[17] R. Zhang, L. Zhao, W. Lou, J. M. Abrigo, V. C. T. Mok, W. C. W. Chu, D. Wang, and L. Shi, ”Automatic segmentation of acute ischemic stroke from DWI using 3-D fully convolutional densenets,” IEEE transactions on medical imaging, vol. 37, no. 9, pp. 2149-2160, 2018.
[18] L. Liu, S. Chen, F. Zhang, F.-X. Wu, Y. Pan, J. J. N. C. Wang, and Applications, ”Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI,” Neural Computing and Applications, pp. 1-14, 2019.
[19] J. Long, E. Shelhamer, and T. Darrell, ”Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440.
[20] H. Chen, Q. Dou, L. Yu, J. Qin, and P.-A. J. N. Heng, ”VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images,” NeuroImage, vol. 170, pp. 446-455, 2018.
[21] H. Lutsep, G. Albers, A. DeCrespigny, G. Kamat, M. Marks, M. J. A. o. N. O. J. o. t. A. N. A. Moseley, and t. C. N. Society, ”Clinical utility of diffusion‐weighted magnetic resonance imaging in the assessment of ischemic stroke,” Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol. 41, no. 5, pp. 574-580, 1997.
[22] M. Al-Khaled, C. Matthis, T. F. Münte, and J. J. N. Eggers, ”The incidence and clinical predictors of acute infarction in patients with transient ischemic attack using MRI including DWI,” Neuroradiology, vol. 55, no. 2, pp. 157-163, 2013.
[23] V. Newcombe, T. Das, and J. J. J. o. n. Cross, ”Diffusion imaging in neurological disease,” Journal of neurology, vol. 260, no. 1, pp. 335-342, 2013.
[24] E. Smith, M. Gurol, J. Eng, C. Engel, T. Nguyen, J. Rosand, and S. J. N. Greenberg, ”White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage,” Neurology, vol. 63, no. 9, pp. 1606-1612, 2004.
[25] M. M. Schoonheim, R. M. Vigeveno, F. C. R. Lopes, P. J. Pouwels, C. H. Polman, F. Barkhof, and J. J. J. H. b. m. Geurts, ”Sex‐specific extent and severity of white matter damage in multiple sclerosis: Implications for cognitive decline,” Human brain mapping, vol. 35, no. 5, pp. 2348-2358, 2014.
[26] M. M. Poels, K. Zaccai, G. C. Verwoert, M. W. Vernooij, A. Hofman, A. van der Lugt, J. C. Witteman, M. M. Breteler, F. U. Mattace-Raso, and M. A. J. S. Ikram, ”Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study,” Stroke, vol. 43, no. 10, pp. 2637-2642, 2012.
[27] N. Altaf, P. S. Morgan, A. Moody, S. T. MacSweeney, J. Gladman, and D. P. J. R. Auer, ”Brain white matter hyperintensities are associated with carotid intraplaque hemorrhage,” Radiology, vol. 248, no. 1, pp. 202-209, 2008.
[28] 磁共振常見偽影的類型及消除辦法簡介. Available: https://kknews.cc/zh-tw/news/g36p58.html
[29] Y. Du, E. A. Allen, H. He, J. Sui, and V. D. Calhoun, ”Brain functional networks extraction based on fMRI artifact removal: Single subject and group approaches,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 1026-1029: IEEE.
[30] M. Julien and Z. Yue-Min, ”Model-based intensity nonuniformity correction in brain MRI,” in Proceedings 7th International Conference on Signal Processing, 2004. Proceedings. ICSP′04. 2004., 2004, vol. 2, pp. 982-985: IEEE.
[31] S. T. M. Duong, M. M. Schira, S. L. Phung, A. Bouzerdoum, and H. Taylor, ”Anatomy-Guided Inverse-Gradient Susceptibility Artifact Correction Method for High-Resolution FMRI,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 786-790: IEEE.
[32] N. J. I. t. o. s. Otsu, man, and cybernetics, ”A threshold selection method from gray-level histograms,” IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-66, 1979.
[33] O. D. Trier, T. J. I. t. o. p. a. Taxt, and m. intelligence, ”Evaluation of binarization methods for document images,” IEEE transactions on pattern analysis and machine intelligence, vol. 17, no. 3, pp. 312-315, 1995.
[34] Ø. D. Trier, A. K. J. I. T. o. P. A. Jain, and M. Intelligence, ”Goal-directed evaluation of binarization methods,” IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 12, pp. 1191-1201, 1995.
[35] T. L. Faber, E. M. J. I. T. o. P. A. Stokely, and M. Intelligence, ”Orientation of 3-D structures in medical images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp. 626-633, 1988.
[36] K. V. Mardia, T. J. I. t. o. p. a. Hainsworth, and m. intelligence, ”A spatial thresholding method for image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 10, no. 6, pp. 919-927, 1988.
[37] L. Zou, J. Zheng, C. Miao, M. J. Mckeown, and Z. J. J. I. A. Wang, ”3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI,” IEEE Access, vol. 5, pp. 23626-23636, 2017.
[38] R. Vinoth and C. Venkatesh, ”Segmentation and Detection of Tumor in MRI images Using CNN and SVM Classification,” in 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), 2018, pp. 21-25: IEEE.
[39] V. Bhanumathi and R. Sangeetha, ”CNN Based Training and Classification of MRI Brain Images,” in 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), 2019, pp. 129-133: IEEE.
[40] M. Haghighi, S. K. Warfield, and S. Kurugol, ”Automatic renal segmentation in Dce-Mri using convolutional neural networks,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 1534-1537: IEEE.
[41] S. Archa and C. S. Kumar, ”Segmentation of Brain Tumor in MRI Images Using CNN with Edge Detection,” in 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), 2018, pp. 1-4: IEEE.
[42] S. M. Shelke and S. W. Mohod, ”Automated Segmentation and Detection of Brain Tumor from MRI,” in 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2018, pp. 2120-2126: IEEE.
[43] I. Fantini, L. Rittner, C. Yasuda, and R. Lotufo, ”Automatic detection of motion artifacts on MRI using Deep CNN,” in 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2018, pp. 1-4: IEEE.
[44] K. Thara and K. Jasmine, ”Brain tumour detection in MRI images using PNN and GRNN,” in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016, pp. 1504-1510: IEEE.
[45] A. G. Lakshmanan, A. Swarnambiga, S. Vasuki, and A. A. Raja, ”Affine based image registration applied to MRI brain,” in 2013 International Conference on Information Communication and Embedded Systems (ICICES), 2013, pp. 644-649: IEEE.
[46] A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, and K. J. I. t. o. m. i. Gopinath, ”Brain functional localization: a survey of image registration techniques,” IEEE Transactions on Medical Imaging vol. 26, no. 4, pp. 427-451, 2007.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明