參考文獻 |
[1] (2019). 衛生福利部,107年死因統計年報電子書,衛生福利部. Available: https://dep.mohw.gov.tw/DOS/lp-4472-113.html
[2] J.-Z. Tsai, S.-J. Peng, Y.-W. Chen, K.-W. Wang, H.-K. Wu, Y.-Y. Lin, Y.-Y. Lee, C.-J. Chen, H.-J. Lin, and E. E. J. B. r. i. Smith, ”Automatic detection and quantification of acute cerebral infarct by fuzzy clustering and histographic characterization on diffusion weighted MR imaging and apparent diffusion coefficient map,” BioMed Research International, vol. 2014, 2014.
[3] J. Canny, ”A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 6, pp. 679-698, 1986.
[4] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media, 2013.
[5] P. Anbeek, K. L. Vincken, G. S. Van Bochove, M. J. Van Osch, and J. J. N. van der Grond, ”Probabilistic segmentation of brain tissue in MR imaging,” NeuroImage, vol. 27, no. 4, pp. 795-804, 2005.
[6] P. Anbeek, K. L. Vincken, M. J. van Osch, R. H. Bisschops, and J. J. M. i. a. van der Grond, ”Automatic segmentation of different-sized white matter lesions by voxel probability estimation,” Medical Image Analysis, vol. 8, no. 3, pp. 205-215, 2004.
[7] J.-Z. Tsai, S.-J. Peng, Y.-W. Chen, K.-W. Wang, C.-H. Li, J.-Y. Wang, C.-J. Chen, H.-J. Lin, E. E. Smith, and H.-K. J. P. o. Wu, ”Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with cerebral infarction,” PloS one, vol. 9, no. 8, p. e104011, 2014.
[8] N. P. De La Ossa, M. Hernandez-Perez, S. Domenech, P. Cuadras, A. Massuet, M. Millan, M. Gomis, E. López-Cancio, L. Dorado, and A. J. C. D. Dávalos, ”Hyperintensity of distal vessels on FLAIR is associated with slow progression of the infarction in acute ischemic stroke,” Cerebrovascular Diseases, vol. 34, no. 5-6, pp. 376-384, 2012.
[9] L. Chen, P. Bentley, and D. J. N. C. Rueckert, ”Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks,” NeuroImage, vol. 15, pp. 633-643, 2017.
[10] M. Ghafoorian, N. Karssemeijer, T. Heskes, I. W. van Uden, C. I. Sanchez, G. Litjens, F.-E. de Leeuw, B. van Ginneken, E. Marchiori, and B. J. S. R. Platel, ”Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities,” Scientific Reports, vol. 7, no. 1, p. 5110, 2017.
[11] D. R. Pereira, P. P. Reboucas Filho, G. H. de Rosa, J. P. Papa, and V. H. C. de Albuquerque, ”Stroke lesion detection using convolutional neural networks,” in 2018 International joint conference on neural networks (IJCNN), 2018, pp. 1-6: IEEE.
[12] K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon, D. Rueckert, and B. J. M. i. a. Glocker, ”Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation,” Medical image analysis, vol. 36, pp. 61-78, 2017.
[13] S. Ghosh, P. Boulanger, S. T. Acton, S. S. Blemker, and N. Ray, ”Automated 3D muscle segmentation from MRI data using convolutional neural network,” in 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 4437-4441: IEEE.
[14] H. Vu, H.-C. Kim, and J.-H. Lee, ”3D convolutional neural network for feature extraction and classification of fMRI volumes,” in 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2018, pp. 1-4: IEEE.
[15] S. Kumar, A. Negi, J. Singh, and H. Verma, ”A deep learning for brain tumor mri images semantic segmentation using fcn,” in 2018 4th International Conference on Computing Communication and Automation (ICCCA), 2018, pp. 1-4: IEEE.
[16] Z. Wang, Y. Sun, Q. Shen, and L. J. I. A. Cao, ”Dilated 3D Convolutional Neural Networks for Brain MRI Data Classification,” IEEE Access, vol. 7, pp. 134388-134398, 2019.
[17] R. Zhang, L. Zhao, W. Lou, J. M. Abrigo, V. C. T. Mok, W. C. W. Chu, D. Wang, and L. Shi, ”Automatic segmentation of acute ischemic stroke from DWI using 3-D fully convolutional densenets,” IEEE transactions on medical imaging, vol. 37, no. 9, pp. 2149-2160, 2018.
[18] L. Liu, S. Chen, F. Zhang, F.-X. Wu, Y. Pan, J. J. N. C. Wang, and Applications, ”Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI,” Neural Computing and Applications, pp. 1-14, 2019.
[19] J. Long, E. Shelhamer, and T. Darrell, ”Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440.
[20] H. Chen, Q. Dou, L. Yu, J. Qin, and P.-A. J. N. Heng, ”VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images,” NeuroImage, vol. 170, pp. 446-455, 2018.
[21] H. Lutsep, G. Albers, A. DeCrespigny, G. Kamat, M. Marks, M. J. A. o. N. O. J. o. t. A. N. A. Moseley, and t. C. N. Society, ”Clinical utility of diffusion‐weighted magnetic resonance imaging in the assessment of ischemic stroke,” Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol. 41, no. 5, pp. 574-580, 1997.
[22] M. Al-Khaled, C. Matthis, T. F. Münte, and J. J. N. Eggers, ”The incidence and clinical predictors of acute infarction in patients with transient ischemic attack using MRI including DWI,” Neuroradiology, vol. 55, no. 2, pp. 157-163, 2013.
[23] V. Newcombe, T. Das, and J. J. J. o. n. Cross, ”Diffusion imaging in neurological disease,” Journal of neurology, vol. 260, no. 1, pp. 335-342, 2013.
[24] E. Smith, M. Gurol, J. Eng, C. Engel, T. Nguyen, J. Rosand, and S. J. N. Greenberg, ”White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage,” Neurology, vol. 63, no. 9, pp. 1606-1612, 2004.
[25] M. M. Schoonheim, R. M. Vigeveno, F. C. R. Lopes, P. J. Pouwels, C. H. Polman, F. Barkhof, and J. J. J. H. b. m. Geurts, ”Sex‐specific extent and severity of white matter damage in multiple sclerosis: Implications for cognitive decline,” Human brain mapping, vol. 35, no. 5, pp. 2348-2358, 2014.
[26] M. M. Poels, K. Zaccai, G. C. Verwoert, M. W. Vernooij, A. Hofman, A. van der Lugt, J. C. Witteman, M. M. Breteler, F. U. Mattace-Raso, and M. A. J. S. Ikram, ”Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study,” Stroke, vol. 43, no. 10, pp. 2637-2642, 2012.
[27] N. Altaf, P. S. Morgan, A. Moody, S. T. MacSweeney, J. Gladman, and D. P. J. R. Auer, ”Brain white matter hyperintensities are associated with carotid intraplaque hemorrhage,” Radiology, vol. 248, no. 1, pp. 202-209, 2008.
[28] 磁共振常見偽影的類型及消除辦法簡介. Available: https://kknews.cc/zh-tw/news/g36p58.html
[29] Y. Du, E. A. Allen, H. He, J. Sui, and V. D. Calhoun, ”Brain functional networks extraction based on fMRI artifact removal: Single subject and group approaches,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 1026-1029: IEEE.
[30] M. Julien and Z. Yue-Min, ”Model-based intensity nonuniformity correction in brain MRI,” in Proceedings 7th International Conference on Signal Processing, 2004. Proceedings. ICSP′04. 2004., 2004, vol. 2, pp. 982-985: IEEE.
[31] S. T. M. Duong, M. M. Schira, S. L. Phung, A. Bouzerdoum, and H. Taylor, ”Anatomy-Guided Inverse-Gradient Susceptibility Artifact Correction Method for High-Resolution FMRI,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 786-790: IEEE.
[32] N. J. I. t. o. s. Otsu, man, and cybernetics, ”A threshold selection method from gray-level histograms,” IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-66, 1979.
[33] O. D. Trier, T. J. I. t. o. p. a. Taxt, and m. intelligence, ”Evaluation of binarization methods for document images,” IEEE transactions on pattern analysis and machine intelligence, vol. 17, no. 3, pp. 312-315, 1995.
[34] Ø. D. Trier, A. K. J. I. T. o. P. A. Jain, and M. Intelligence, ”Goal-directed evaluation of binarization methods,” IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 12, pp. 1191-1201, 1995.
[35] T. L. Faber, E. M. J. I. T. o. P. A. Stokely, and M. Intelligence, ”Orientation of 3-D structures in medical images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp. 626-633, 1988.
[36] K. V. Mardia, T. J. I. t. o. p. a. Hainsworth, and m. intelligence, ”A spatial thresholding method for image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 10, no. 6, pp. 919-927, 1988.
[37] L. Zou, J. Zheng, C. Miao, M. J. Mckeown, and Z. J. J. I. A. Wang, ”3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI,” IEEE Access, vol. 5, pp. 23626-23636, 2017.
[38] R. Vinoth and C. Venkatesh, ”Segmentation and Detection of Tumor in MRI images Using CNN and SVM Classification,” in 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), 2018, pp. 21-25: IEEE.
[39] V. Bhanumathi and R. Sangeetha, ”CNN Based Training and Classification of MRI Brain Images,” in 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), 2019, pp. 129-133: IEEE.
[40] M. Haghighi, S. K. Warfield, and S. Kurugol, ”Automatic renal segmentation in Dce-Mri using convolutional neural networks,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 1534-1537: IEEE.
[41] S. Archa and C. S. Kumar, ”Segmentation of Brain Tumor in MRI Images Using CNN with Edge Detection,” in 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), 2018, pp. 1-4: IEEE.
[42] S. M. Shelke and S. W. Mohod, ”Automated Segmentation and Detection of Brain Tumor from MRI,” in 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2018, pp. 2120-2126: IEEE.
[43] I. Fantini, L. Rittner, C. Yasuda, and R. Lotufo, ”Automatic detection of motion artifacts on MRI using Deep CNN,” in 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2018, pp. 1-4: IEEE.
[44] K. Thara and K. Jasmine, ”Brain tumour detection in MRI images using PNN and GRNN,” in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016, pp. 1504-1510: IEEE.
[45] A. G. Lakshmanan, A. Swarnambiga, S. Vasuki, and A. A. Raja, ”Affine based image registration applied to MRI brain,” in 2013 International Conference on Information Communication and Embedded Systems (ICICES), 2013, pp. 644-649: IEEE.
[46] A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, and K. J. I. t. o. m. i. Gopinath, ”Brain functional localization: a survey of image registration techniques,” IEEE Transactions on Medical Imaging vol. 26, no. 4, pp. 427-451, 2007.
|