參考文獻 |
[1] J. Blasco, M. C. Calzada, and M. Mar´ın, A fictitious domain, parallel numerical method for rigid particulate flows, Journal of Computational Physics, 228
(2009), pp. 7596-7613.
[2] Y.-H. Chang, Numerical Simulation of Unsteady Complex Flows Using an Artificial Compressibility-Immersed Boundary Method with Direct Forcing, Master
Thesis, National Central University, Taiwan, January 2018.
[3] M.-J. Chern, Y.-H. Kuan, G. Nugroho, G.-T. Lu, and T.-L. Horng, Directforcing immersed boundary modeling of vortex-induced vibration of a circular cylinder, Journal of Wind Engineering and Industrial Aerodynamics, 134
(2014), pp. 109-121.
[4] M.-J. Chern, D. Z. Noor, C.-B. Liao, and T.-L. Horng, Direct-forcing immersed boundary method for mixed heat transfer, Communications in Computational Physics, 18 (2015), pp.1072-1094.
[5] M.-J. Chern, W.-C. Shiu, and T.-L. Horng, Immersed boundary modeling
for interaction of oscillatory flow with cylinder array under effects of flow
direction and cylinder arrangement, Journal of Fluids and Structures, 43 (2013),
pp. 325-346.
[6] H. Choi and P. Moin, Effects of the computational time step on numerical
solutions of turbulent flow, Journal of Computational Physics, 113 (1994), pp.
1-4.
[7] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics
of Computation, 22 (1968), pp. 745-762.
[8] A. J. Chorin, On the convergence of discrete approximations to NavierStokes equations, Mathematics of Computation, 23 (1969), pp. 341-353.
[9] B. E. Griffith, An accurate and efficient method for the incompressible
Navier-Stokes equations using the projection method as a preconditioner,
Journal of Computational Physics, 228 (2009), pp. 7565-7595.
[10] J.-L. Guermond, P. Minev, and J. Shen, An overview of projection methods
for incompressible flows, Computer Methods in Applied Mechanics and Engineering, 195 (2006), pp. 6011-6045.
[11] J.-L. Guermond and P. Minev, High-order time stepping for the incompressible Navier-Stokes equations, SIAM Journal on Scientific Computing, 37 (2015),
pp. A2656-A2681.
[12] J.-L. Guermond and P. D. Minev, High-order time stepping for the NavierStokes equations with minimal computational complexity, Journal of Computational and Applied Mathematics, 310 (2017), pp. 92-103.
[13] R. Glowinski, T.-W. Pan, T. I. Hesla, D. D. Joseph and J. Periaux, A fictitious ´
domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, Journal
of Computational Physics, 169 (2001), pp. 363-426.
[14] T.-L. Horng, P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A simple direct-forcing
immersed boundary projection method with prediction-correction for fluidsolid interaction problems, Computers & Fluids, 176 (2018), pp. 135-152.
[15] P.-W. Hsieh, M.-C. Lai, S.-Y. Yang, and C.-S. You, An unconditionally energy
stable penalty immersed boundary method for simulating the dynamics of
an inextensible interface interacting with a solid particle, Journal of Scientific
Computing, 64 (2015), pp. 289-316.
[16] P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A direct-forcing immersed boundary
projection method for simulating the dynamics of freely falling solid bodies
in an incompressible viscous fluid, Annals of Mathematical Sciences and Applications, accepted for publication, 2019.
[17] T. Kajishima, S. Takiguchi, H. Hamasaki, and Y. Miyake, Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding,
JSME International Journal, Series B, 44 (2001), pp. 526-535.
[18] T. Kajishima and S. Takiguchi, Interaction between particle clusters and
particle-induced turbulence, International Journal of Heat and Fluid Flow, 23
(2002), pp. 639-646.
[19] Y. Kim and M.-C. Lai, Simulating the dynamics of inextensible vesicles by
the penalty immersed boundary method, Journal of Computational Physics,
229 (2010), pp. 4840-4853.
[20] Y. Kim and C. S. Peskin, Penalty immersed boundary method for an elastic
boundary with mass, Physics of Fluids, 19 (2007), 053103.
[21] J. Kim, D. Kim, and H. Choi, An immersed-boundary finite-volume method
for simulations of flow in complex geometries, Journal of Computational
Physics, 171 (2001), pp. 132-150.
[22] D. Z. Noor, M.-J. Chern, and T.-L. Horng, An immersed boundary method
to solve fluid-solid interaction problems, Computational Mechanics, 44 (2009),
pp. 447-453.
[23] A. Quarteroni, F. Saleri, and A. Veneziani, Factorization methods for the numerical approximation of Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 188 (2000), pp. 505-526.
[24] C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), pp.
479-517.
[25] C. S. Peskin, Flow patterns around heart valved: a numerical method, Journal
of Computational Physics, 10 (1972), pp. 252-271.
[26] M. Uhlmann, An immersed boundary method with direct forcing for the
simulation of particulate flows, Journal of Computational Physics, 209 (2005),
pp. 448-476.
[27] C.-S. You, On Two Immersed Boundary Methods for Simulating the Dynamics of
Fluid-Structure Interaction Problems, PhD Dissertation, National Central University, Taiwan, June 2016. |