博碩士論文 106323006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.149.23.124
姓名 孟令軒(Ling-Xuan Meng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 顆粒體微觀熱傳與力學理論的基準測試
(nono)
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-2-1以後開放)
摘要(中) 本研究提出離散元素法( Discrete Element Method, DEM )顆粒體微觀熱傳與力學理論,為了驗證顆粒體微觀熱傳與力學理論,本研究建立八個基準測試,確認離散元素模型的合理性與正確性,並作為開發3D列印離散元素模型的基礎。八個基準測試分別為:(1)兩端固定桿件的受熱應力分析;(2)無邊界束制彈性立方體受熱分析;(3)具邊界束制彈性立方體受熱應力分析;(4)半無限垂直圓柱試體的受熱分析;(5)矩形柱體承受兩端溫差的受熱分析;(6)含半圓形孔平板試體的受熱穩態應力分析;(7)含半圓形孔平板試體的受熱暫態應力分析;(8)顆粒排列方式對熱傳效應的影響。經由八個基準測試得知離散元素模擬結果與現有連續體理論解析解及有限元素法數值解相當吻合,證明了顆粒體熱傳理論、接觸鍵接理論及顆粒應力張量理論的合理性與正確性,並連接了微觀與巨觀理論的一致性。研究顯示配位數越大與粒子體積佔有率越高,其熱傳導性越佳,不同的結晶結構熱傳導性排序為:六方緊密堆積(HCP) ≒ 面心立方(FCC) 體心立方(BCC) ≒ 隨機排列(Random) 簡單立方(SC)。本研究提出的顆粒體熱傳理論尚未考量顆粒接觸面積的影響,在未來應納入顆粒接觸面積的因素。
摘要(英) This study investigates mechanical and thermal behaviours of granular assemblies by using discrete element modelling (DEM). To verify the proposed model of granule heat transfer, eight benchmark tests were established as follows:(1) a rectangular prism with fixed ends subjected to sudden temperature increases;(2) an isotropic and elastic cube with free boundary subject to sudden temperature changes;(3) an isotropic and elastic cube with boundary constraints subject to sudden temperature changes;(4) Semi-infinite vertical isotropic cylinder given the initial lower temperature and subjected to a fixed higher temperature at the top;(5) a rectangular body with simple cubic (SC) structure with free boundary, given the initial lower temperature and subjected to a fixed higher temperature at the left side;(6) Steady-state analysis of a plate with a semi-circular hole with boundary constraints, subjected to sudden temperature increases;(7) Transient analysis of a plate with a semi-circular hole with boundary constraints, subjected to sudden temperature increases;(8) a rectangular body formed of different crystal structures, given the initial lower temperature and subjected to a fixed higher temperature at the left side. The study shows that the DEM results match very well with the FEM and analytical solutions of continuum theory, which proves the rationality of the granule heat transfer, the bonding theory and the particle stress formula. The results also show that the heat conductivity of the face-centered cubic (FCC) structure is very close to that of the hexagonal closest packed (HCP) structure, and the heat conductivities of the body-centered cubic (BCC) structure and the random packing (RP) structure are very close. The heat conductivity follows the sequence : FCC ≒ HCP > BCC ≒ RP > SC.
關鍵字(中) ★ 離散元素電腦模擬
★ 顆粒體熱傳理論
★ 顆粒體力學理論
★ 電腦模擬驗證研究
★ 顆粒結晶結構
關鍵字(英) ★ Discrete element simulation
★ Granule heat transfer
★ Granular mechanics
★ simulation verification
★ Packing structure
論文目次 摘要 i
英文摘要 ii
目錄 iii
第一章 緒論 1
1-1 緒論 1
1-2 研究動機 5
第二章 數值架構 6
2-1 離散元素法之架構 6
2-2 三維剛體運動方程式 8
2-3 接觸力模型 9
2-4 接觸鍵接模式 11
2-5 顆粒體熱傳理論 12
2-6 熱應變的計算 15
2-7 顆粒體應力張量 16
2-8 臨界時間步 18
第三章 結果與討論 19
3-1 兩端固定桿件的受熱應力分析 19
3-2 無邊界束制彈性立方體受熱分析 22
3-3 具邊界束制彈性立方體受熱應力分析 25
3-4 半無限垂直圓柱試體的受熱分析 31
3-5 矩形柱體承受兩端溫差的受熱分析 34
3-6 含半圓形孔平板試體的受熱穩態應力分析 37
3-7 含半圓形孔平板試體的受熱暫態應力分析 43
3-8 顆粒排列方式對熱傳效應的影響 50
第四章 結論 55
參考文獻 56
參考文獻 Markillie, P. (2012). A third industrial revolution. The Economist. http://www.economist.com/node/21552901.
Li, Y., Gu, D. (2014). Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Materials & Design 63, 856-867.
Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S. (2016). The metallurgy and processing science of metal additive manufacturing. International Materials Reviews 61, 315-360.
林鼎勝,民國103,3D列印的發展現況,科學發展503期。
Kolossov, S., Boillat, E., Glardon, R., Fischer, P., Locher, M. (2004). 3D FE Simulation for temperature evolution in the selective laser sintering process. International Journal of Machine Tools and Manufacture 44, 117-123.
Ma, L., Bin, H. (2007). Temperature and stress analysis and simulation in fractal scanning-based laser sintering. The International Journal of Advanced Manufacturing Technology 34, 898-903.
Roberts, I.A., Wang, C.J., Esterlein, R., Stanford, M., Mynors, D.J. (2009). A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. International Journal of Machine Tools and Manufacture 49, 916-923.
Cao, J., Gharghouri, M.A., Nash P. (2016). Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates. Journal of Materials Processing Technology 237, 409-419.
Mukherjee, T., Zhang, W., DebRoy, T. (2017). An improved prediction of residual stresses and distortion in additive manufacturing. Computational Materials Science 126, 360-372.
Yang, L., Gan, Y., Zhang, Y., Chen, J.K. (2012). Molecular dynamics simulation of neck growth in laser sintering of different-sized gold nanoparticles under different heating rates. Applied Physics A: Materials Science and Processing 106, 725-735.
Jiang, S., Zhang, Y., Gan, Y., Chen Z., Peng, H. (2013). Molecular Dynamics Study of Neck Growth in Laser Sintering of Hollow Silver Nanoparticles with Different Heating Rates. Journal of Physics D: Applied Physics 46, 335302-335312.
江育文、盧建銘、朱力民、李銘孝、林雨聖、賴昱衡、楊春陵、歐耿良,民國105,金屬奈米粉末應用於雷射粉體熔化成型積層製造之物理特性研究,中華民國力學學會第四十屆全國力學會議,國立交通大學,新竹。
Parhami, F., McMeekingA, R.M. (1998). A network model for initial stage sintering. Mechanics of Materials 27, 111-124.
Gusarov, A.V., Laoui, T., Froyen, L., Titov, V.I. (2003). Contact thermal conductivity of a powder bed in selective laser sintering. International Journal of Heat and Mass Transfer 46, 1103-1109.
Yun, T.S., Matthew Evans, T. (2010). Three-dimensional random network model for thermal conductivity in particulate materials. Computers and Geotechnics 37, 991-998.
Ganeriwala, R., Zohdib, Tarek I. (2014). Multiphysics modeling and simulation of selective laser sintering manufacturing processes. Procedia CIRP 14, 299-304.
Lee, W.H., Zhang, Y., Zhang, J. (2017). Discrete element modeling of powder flow and laser heating in direct metal laser sintering process. Powder Technology 315, 300-308
Xin, H., Sun, W.C., Fish, J. (2017). Discrete element simulations of powder-bed sintering-based additive manufacturing. International Journal of Mechanical Sciences 000, 1-20.
Parry, L.A., Ashcroft, I.A., Wildman, R.D. (2019). Geometrical effects on residual stress in selective laser melting. Additive Manufacturing 25, 166-175.
林沐禾,民國105,掉落體衝擊顆粒床之力學與運動行為的研究:DEM的實驗驗證及內部性質探討,國立中央大學,碩士論文。
Cundall, P.A., Strack, O.D.L. (1979). Discrete numerical-model for granular assemblies. Geotechnique 29, 47-65.
Chung, Y.C., Wu, C.W., Kuo, C.Y., Hsiau, S.S. (2019). A rapid granular chute avalanche impinging on a small fixed obstacle:DEM modeling, experimental validation and exploration of granular stress. Applied Mathematical Modelling 74, 540-568.
Foroozmehr, A., Badrossamay, M., Foroozmehr, E. (2016). Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed, Materials & Design 89, 255-263.
Carslaw, H.S., Jaeger J.C. (1959). Conduction of Heat in Solids, 2th Ed. London: Oxford Press.
Incropera, F.P., Lavine, A.S., Bergman, T.L., DeWitt, D.P. (2013). Principles of heat and mass transfer, 7th Ed. New York : Wiley Press.
Potyondy, D.O., Cundall, P.A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences 41, 1329-1364.
Pytel A., Kiusalaas J. (2012). Mechanics of Materials, 2th Ed.
MatWeb, http://www.matweb.com/, 316 Stainless Steel, accessed on Sep 1, 2018.
Sadd, Martin H. (2014). Elasticity:Theory, Applications, and Numerics, 3th Ed.
Crank, J. (1975). The Mathematics of Diffusion, 2th Ed. Oxford: Oxford University Press.
MatWeb, http://www.matweb.com/, Ti-6Al-4V, accessed on Sep 1, 2018.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2020-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明