博碩士論文 104323002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.145.119.199
姓名 陳威廷(Wei-Ting Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究
★ 石墨烯之複合電極於全固態纖維式微型超電容的研究★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究
★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性
★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究
★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 碳材料催化劑有潛力應用於電化學中的析氫反應(HER)來產生氫氣做為能源,尤其石墨烯其能隙結構可藉由摻雜不同的元素來降低析氫反應所需的活化能,當摻雜多個不同元素下還能產生協同作用,進一步提升其析氫反應的活性。本實驗採用了兩步合成的方法來製備磷(P)-氮(N)雙摻雜氧化石墨烯,第一步以水熱法先摻雜磷元素後,接著第二步再高溫退火時通入氨氣摻雜氮元素已完成製備,不同條件下的參數命名為 (NP-溫度 PA X,例如NP-1000 PA 4 為第一步水熱法氧化石墨烯溶液(GO)與植酸(PA)的比例為15 mL/4 mL,退火溫度在1000度的條件下通入氨氣完成製備)。在探討析氫反應的活性中,本實驗改變了磷的前驅物濃度及不同的退火溫度來找到最佳參數,關於磷的前驅物濃度,發現到隨著磷元素摻雜的增加,即使氨氣的量一樣,其氮摻雜的量也會增加;在不同退火溫度800度、900度、1000度的探討中,900度的退火溫度有最高的摻雜原子量,其含有9.8 %的氮元素和4.8 %的磷元素,但是在析氫反應的電化學測式中,1000度的退火溫度條件有最好的析氫反應, NP-1000 PA 4中的原子摻雜比率是6.7 %的氮和4 %的磷,其原因為1000度退火溫度下,氧化石墨烯的還原程度較高,電阻較低,即使元素摻雜的比例較低,其析氫反應的活性仍較900度的好,NP-1000 PA 4表現出的析氫反應只需施加過電壓為338 mV就能達到10 mA/cm2 電流密度,Tafel斜率為88 mV / dec和Rct 32 Ω,因此,磷氮摻雜的氧化石墨烯未來有希望作為析氫反應的活性材料。
摘要(英) Carbon-based catalysts are promising for electrochemical hydrogen evolution reaction (HER). The bandgap of graphene can be tailored through the doping processes and resulting in a synergistic coupling effect. Herein, two-step synthesis phosphorus(P)-nitrogen(N) dual doped graphene oxide was prepared, followed by annealing at different temperatures to explore the catalyst effect for HER applications. Green phosphorus precursor phytic acid and nitrogen precursor ammonia gas were used in this experimental work. The heteroatom doping concentrations were studied and discussed. The doping level of phosphorus in the first step was found to enhance the nitrogen doping effect in the second step. The highest doping atomic ratio was achieved in the sample NP-900 PA 4 with 9.8% N and 4.8 %P. The annealing process at different temperatures was used for finding an optimized condition in order to reduce graphene oxide while maintaining the active sites in graphene structure. The atomic doping ratio in NP-1000 PA was 6.7% nitrogen and 4% phosphorus. Also, NP-1000 PA 4 displayed superior HER performance with an overpotential of 338 mV (10 mA/cm2), Tafel slope of 88 mV/dec, and Rct of 32 Ω. Therefore, there is a great potential to use such dual doped graphene as an efficient catalyst for the future hydrogen energy system.
關鍵字(中) ★ 石墨烯
★ 析氫反應
★ 協同作用
關鍵字(英)
論文目次 1 Introduction 1
1.1 Sustainable demands of renewable energy resources 1
1.2 Article review and Research background 4
1.2.1 Hydrogen production techniques 4
1.2.2 Research motivation and our approach 6
2 Working principles 9
2.1 Graphene as efficient catalysts of HER 9
2.2 Doping mechanisms and effect 10
3 Experimental details 12
3.1 Chemicals and materials 12
3.2 Sample preparation and doping methods 13
3.2.1 Preparation of graphene oxide 13
3.2.2 Phosphorus (P) doped graphene oxide 14
3.2.3 Lyophilization 14
3.2.4 Nitrogen (N) doped graphene 15
3.2.5 Preparation for electrochemical specimen 16
3.3 Material characterizations 16
3.3.1 Surface morphology analysis 16
3.3.2 Crystal structure analysis 17
3.3.3 Elemental composition analysis 17
3.4 Electrochemical characterization 17
3.4.1 Linear Sweep voltammetry, LSV 18
3.4.2 Electrochemical Impedance Spectroscopy, EIS 18
3.4.3 IR compensation 19
3.4.4 Reversible hydrogen electrode calibration 20
4 Result and Discussion 21
4.1 Surface morphology analysis 21
4.2 Phosphorus precursor concentration effect 22
4.3 Annealing temperature effect 26
5 Conclusion and future work 34
6 Reference 35
參考文獻 1. REN21, 2018, Renewables 2018 Global Status Report, (Paris: REN21 Secretariat).
2. Robinius, M.; Raje, T.; Nykamp, S.; Rott, T.; Müller, M.; Grube, T.; Katzenbach, B.; Küppers, S.; Stolten, D., Power-to-Gas: Electrolyzers as an alternative to network expansion – An example from a distribution system operator. Applied Energy 2018, 210, 182-197.
3. Different scenarios for producing renewable hydrogen and electricity.
4. Hosseini, S. E.; Wahid, M. A., Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 2016, 57, 850-866.
5. Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 2015, 44 (15), 5148-80.
6. FLETCHER, S., Tafel slopes from first principles. Journal of Solid State Electrochemistry 2009, 13 (4), pp. 537–549.
7. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar water splitting cells. Chem Rev 2010, 110 (11), 6446-73.
8. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S., High-performance electrocatalysis using metallic cobalt pyrite (CoS(2)) micro- and nanostructures. J Am Chem Soc 2014, 136 (28), 10053-61.
9. Li, W.; Gao, X.; Xiong, D.; Xia, F.; Liu, J.; Song, W. G.; Xu, J.; Thalluri, S. M.; Cerqueira, M. F.; Fu, X.; Liu, L., Vapor-solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chem Sci 2017, 8 (4), 2952-2958.
10. Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X.; Lou, X. W., Hierarchical MoS2microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 2014, 7 (10), 3302-3306.
11. Zhou, H.; Yu, F.; Sun, J.; He, R.; Wang, Y.; Guo, C. F.; Wang, F.; Lan, Y.; Ren, Z.; Chen, S., Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 2016, 4 (24), 9472-9476.
12. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 2013, 135 (25), 9267-70.
13. Zhang, C.; Lv, W.; Tao, Y.; Yang, Q.-H., Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy & Environmental Science 2015, 8 (5), 1390-1403.
14. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B., The role of graphene for electrochemical energy storage. Nature Materials 2014, 14, 271.
15. Dai, L., Carbon-based catalysts for metal-free electrocatalysis. Current Opinion in Electrochemistry 2017.
16. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Letters 2008, 8 (10), 3498-3502.
17. Zhang, L.; Xiao, J.; Wang, H.; Shao, M., Carbon-based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis 2017.
18. Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z., Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed Engl 2012, 51 (46), 11496-500.
19. Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S.-Z., Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy 2016, 1 (10).
20. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L., Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323 (5915), 760-764.
21. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z., Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew Chem Int Ed Engl 2014, 53 (28), 7281-5.
22. Bo, X.; Han, C.; Zhang, Y.; Guo, L., Confined Nanospace Synthesis of Less Aggregated and Porous Nitrogen-Doped Graphene As Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Solution. ACS Applied Materials & Interfaces 2014, 6 (4), 3023-3030.
23. Shinde, S. S.; Sami, A.; Lee, J.-H., Nitrogen- and Phosphorus-Doped Nanoporous Graphene/Graphitic Carbon Nitride Hybrids as Efficient Electrocatalysts for Hydrogen Evolution. ChemCatChem 2015, 7 (23), 3873-3880.
24. Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z., Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed Engl 2013, 52 (11), 3110-6.
25. Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z., Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution. ACS Nano 2014, 8 (5), 5290-5296.
26. Yue, X.; Huang, S.; Jin, Y.; Shen, P. K., Nitrogen and fluorine dual-doped porous graphene-nanosheets as efficient metal-free electrocatalysts for hydrogen-evolution in acidic media. Catalysis Science & Technology 2017, 7 (11), 2228-2235.
27. Choi, C. H.; Chung, M. W.; Kwon, H. C.; Park, S. H.; Woo, S. I., B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. Journal of Materials Chemistry A 2013, 1 (11).
28. Zhang, J.; Qu, L.; Shi, G.; Liu, J.; Chen, J.; Dai, L., N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angew Chem Int Ed Engl 2016, 55 (6), 2230-4.
29. Zhou, J.; Yue, H.; Qi, F.; Wang, H.; Chen, Y., Significantly enhanced electrocatalytic properties of three-dimensional graphene foam via Ar plasma pretreatment and N, S co-doping. International Journal of Hydrogen Energy 2017, 42 (44), 27004-27012.
30. Kundu, S.; Yadav, R. M.; Narayanan, T. N.; Shelke, M. V.; Vajtai, R.; Ajayan, P. M.; Pillai, V. K., Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale 2015, 7 (27), 11515-9.
31. Zhang, J.; Dai, L., Nitrogen, Phosphorus, and Fluorine Tri-doped Graphene as a Multifunctional Catalyst for Self-Powered Electrochemical Water Splitting. Angew Chem Int Ed Engl 2016, 55 (42), 13296-13300.
32. Shi, Y.; Zhang, B., Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 2016, 45 (6), 1529-41.
33. Pu, Z.; Amiinu, I. S.; Liu, X.; Wang, M.; Mu, S., Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation. Nanoscale 2016, 8 (39), 17256-17261.
34. Pu, Z.; Ya, X.; Amiinu, I. S.; Tu, Z.; Liu, X.; Li, W.; Mu, S., Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. Journal of Materials Chemistry A 2016, 4 (40), 15327-15332.
35. Zhuang, M.; Ou, X.; Dou, Y.; Zhang, L.; Zhang, Q.; Wu, R.; Ding, Y.; Shao, M.; Luo, Z., Polymer-Embedded Fabrication of Co2P Nanoparticles Encapsulated in N,P-Doped Graphene for Hydrogen Generation. Nano Lett 2016, 16 (7), 4691-8.
36. Lu, J.; Zhou, W.; Wang, L.; Jia, J.; Ke, Y.; Yang, L.; Zhou, K.; Liu, X.; Tang, Z.; Li, L.; Chen, S., Core–Shell Nanocomposites Based on Gold Nanoparticle@Zinc–Iron-Embedded Porous Carbons Derived from Metal–Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis 2016, 6 (2), 1045-1053.
37. Liu, X.; Dai, L., Carbon-based metal-free catalysts. Nature Reviews Materials 2016, 1 (11).
38. Dobbelaere, T.; Vereecken, P. M.; Detavernier, C., A USB-controlled potentiostat/galvanostat for thin-film battery characterization. HardwareX 2017, 2, 34-49.
39. Yan, D.; Dou, S.; Tao, L.; Liu, Z.; Liu, Z.; Huo, J.; Wang, S., Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4 (36), 13726-13730.
40. Qu, K.; Zheng, Y.; Zhang, X.; Davey, K.; Dai, S.; Qiao, S. Z., Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano 2017, 11 (7), 7293-7300.
指導教授 蘇清源 審核日期 2020-4-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明