博碩士論文 106332604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.133.141.201
姓名 布逹拉(Elmaamoun Ahmed)  查詢紙本館藏   畢業系所 應用材料科學國際研究生碩士學位學程
論文名稱
(Recycling High Valued (S)-(+)-Ibuprofen from the Unused Racemic (R,S)-(±)-Ibuprofen Tablets by Green Chemistry)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ Alq3昇華下降與生物啟發奈米線★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長
★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究★ 蔗糖的同質異構型構
★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ Spherical Crystallization for Lean Solid-Dose Manufacturing by Initial Solvent Screening: The Study of Phenylbutazone★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇研究目的為利用拆分技術將未使用的藥物「外消旋布洛芬(R,S)-(±)-ibuprofen」回收分離得到價值更高的「右旋布洛芬[(S)-(+)-Ibuprofen]」,應用綠色化學方法作為循環經濟的一部分;拆分技術已應用於非鏡像異構鹽類的分離,如:甲基苄胺[(S)-(-)-α-methylbenzylamine]作為拆分溶劑。在本研究中,透過兩個步驟以達成拆分,首先,將回收的外消旋布洛芬與甲基苄胺的反應,形成右旋布洛芬-甲基苄胺鹽類[(S)-(+)-Ibuprofen-(S)-(-)-α-methylbenzylamine salt]及左旋布洛芬-甲基苄胺鹽類[(R)-(-)-Ibuprofen-(S)-(-)-α-methylbenzylamine salt],其中,右旋布洛芬-甲基苄胺鹽類則會沉澱析出;第二步,利用添加硫酸與析出的右旋布洛芬-甲基苄胺鹽類反應而得到右旋布洛芬。根據HPLC的純度含量分析得知,回收得到的右旋布洛芬產率為67%,對映體純度為93.2%;右旋布洛芬-甲基苄胺鹽類及右旋布洛芬兩個分子結構成功透過傅里葉轉換紅外光譜(FTIR)、核磁共振氫譜(1H NMR)、光學顯微鏡(OM)及差示掃描量熱法(DSC)分析鑑定;此外,右旋布洛芬的晶體學數據亦透過粉末X-射線繞射(PXRD)分析鑑定。最後,比較本方法與不對稱合成方法(Asymmetric synthesis),本方法則有較高的產率、較少的步驟、較有利的操作條件及使用較少化學品等的優點。
摘要(英) The aim of this study is to increase the value of recycled (R,S)-(±)-ibuprofen from the unused commercial tablets by resolution, to produce higher valued (S)-(+)-ibuprofen as a part of a circular economy project by applying green chemistry method. The resolution was done by the diastereomeric salt separation method using (S)-(-)-α-methylbenzylamine as a resolving agent. In this work, two steps were performed: (1) reaction of recycled (R,S)-(±)-ibuprofen with (S)-(-)-α-methylbenzylamine to form (S)-(+)-ibuprofen-(S)-(-)-α-methylbenzylamine salt and (R)-(-)-ibuprofen-(S)-(-)-α-methylbenzylamine salt, in which (S)-(+)-ibuprofen-(S)-(-)-α-methylbenzylamine salt was selectively precipitated, followed by (2) recovery of (S)-(+)-ibuprofen by introducing H2SO4 to (S)-(+)-ibuprofen-(S)-(-)-α-methylbenzylamine salt. (S)-(+)-ibuprofen was obtained with 67% overall yield and 93.2% enantiopurity based on HPLC assay. The structures of both (S)-(+)-ibuprofen-(S)-(-)-α-methylbenzylamine salt and (S)-(+)-ibuprofen were successfully verified using FTIR, 1H NMR, OM, and DSC. In addition, the crystallographic data of (S)-(+)-ibuprofen was successfully verified using PXRD. And lastly, by comparing this method with asymmetric synthesis, this method gave better yield, a fewer number of steps, more favorable operating conditions, and fewer chemicals involved.
關鍵字(中) ★ 布洛芬
★ 手性分離
★ 非對映體鹽
★ 綠色化學
★ 回收
★ 除消
★ 解析度
關鍵字(英) ★ Ibuprofen
★ Chiral separation
★ Diastereomeric salt
★ Green Chemistry
★ Recycle
★ deracemization
★ Resolution
論文目次 摘要 v
Abstract vi
Acknowledgement vii
List of Figures xiii
List of Tables xviii
Chapter 1 Introduction 1
1.1 Stereochemistry 1
1.2 History 4
1.3 The Importance of Chirality 5
1.4 Diastereomers 6
1.5 Categories of Racemic Mixtures 9
1.6 Most Used Techniques 11
1.7 Diastereomeric Salt of Ibuprofen 15
1.8 References 17
Chapter 2 Experimental Materials and Methods 25
2.1 Materials 25
2.1.1 Chemicals 25
2.1.2 Solvents 27
2.2 Experimental Procedures 29
2.2.1 Solubility Measurement 29
2.2.2 General Overview of the Process 32
2.2.2.1 Recycle of (R,S)-(±)-ibuprofen 33
2.2.2.2 Formation of Diastereomeric Salts 36
2.2.2.3 Recovery of (S)-(+)-ibuprofen 36
2.2.2.4 Recovery of (R)-(-)-ibuprofen 37
2.3 Analytical Measurements 38
2.3.1 Spectroscopic Method 38
2.3.1.1 Fourier Transform Infrared Spectroscopy (FTIR) 38
2.3.1.2 Nuclear Magnetic Resonance Spectroscopy (NMR) 41
2.3.2 Microscopic Method 43
2.3.2.1 Optical Microscopy (OM) 43
2.3.3 Thermal Analysis Methods 45
2.3.3.1 Differential Scanning Calorimetry (DSC) 45
2.3.4 Crystallographic Analysis Methods 48
2.3.4.1 Powder X-ray Diffraction (PXRD) 48
2.3.5 Separation Method 51
2.3.5.1 High-Performance Liquid Chromatography (HPLC) 51
2.4 References 55
Chapter 3 Results and Discussion 59
3.1 Form Space Determination 59
3.2 Resolution of the Recycled Racemic (R,S)-() Ibuprofen 65
3.3 Characterization of (S)-Ibuprofen-(S)-(-)-α-Methylbenzylamine Salt and (S)-(+)-Ibuprofen 68
3.3.1 FTIR 68
3.3.2 1H NMR 71
3.3.3 OM & DSC 75
3.3.4 PXRD 76
3.3.5 HPLC 78
3.4 Novelty of the Resolution Method 81
3.5 Comparison between the Synthesis of (S)-(+)-Ibuprofen by Asymmetric Synthesis and Diastereomeric Salt 82
3.6 Green Chemistry in Our Work 86
3.7 References 88
Chapter 4 Conclusions and Future Works 91
4.1 Conclusions 91
4.2 Future Works 91
參考文獻 (1) Hornback, J. M. Organic Chemistry, 2nd ed.; Cengage Learning: Belmont, CA, 2005.
(2) Eliel, E. L.; Wilen, S. H.; Doyle, M. P. Basic Organic Stereochemistry, 1st ed.; Wiley-Interscience: New York, 2001.
(3) Organic Stereochemistry: Guiding Principles and Biomedicinal Relevance, 1st ed.; Testa, B., Caldwell, J., Kisak¿rek, M. V., Eds.; Wiley-VCH: Zürich, 2014.
(4) Louis_Pasteur,_foto_av_Paul_Nadar.jpg (2388×3292) https://upload.wikimedia.org/wikipedia/commons/d/d2/Louis_Pasteur%2C_foto_av_Paul_Nadar.jpg (accessed Nov 27, 2019).
(5) Nguyen, L. A.; He, H.; Pham-Huy, C. Chiral Drugs: An Overview. Int J Biomed Sci 2006, 2 (2), 85–100.
(6) Borman, S. Chirality Emerges as Key Issue in Pharmaceutical Research: Despite Concerns That Complexities Associated with Racemate Use Could Force Drastic Changes in the Way Chiral Drugs Are Developed and Marketed, Many Now Believe Upcoming Regulations Are Unlikely to Be Draconian. Chem. Eng. News 1990, 68 (28), 9–14.
(7) Millership, J. S.; Fitzpatrick, A. Commonly Used Chiral Drugs: A Survey. Chirality 1993, 5 (8), 573–576.
(8) Fassihi, A. R. Racemates and Enantiomers in Drug Development. Int. J. Pharm. 1993, 92 (1), 1–14.
(9) McMurry, J. Organic Chemistry, 9th ed.; Cengage Learning: Boston, MA, USA, 2016.
(10) Wang, Y.; Chen, A. M. Enantioenrichment by Crystallization. Org. Process Res. Dev. 2008, 12 (2), 282–290.
(11) Repta, A. J.; Baltezor, M. J.; Bansal, P. C. Utilization of an Enantiomer as a Solution to a Pharmaceutical Problem: Application to Solubilization of 1,2‐di(4‐piperazine‐2,6‐dione)Propane. J. Pharm. Sci. 1976, 65 (2), 238–242.
(12) Dwivedi, S. K.; Sattari, S.; Jamali, F.; Mitchell, A. G. Ibuprofen Racemate and Enantiomers: Phase Diagram, Solubility and Thermodynamic Studies. Int. J. Pharm. 1992, 87 (1–3), 95–104.
(13) Coquerel, G. Review on the Heterogeneous Equilibria between Condensed Phases in Binary Systems of Enantiomers. Enantiomer 2000, 5, 481–498.
(14) The Nobel Prize in Chemistry 2001 https://www.nobelprize.org/prizes/chemistry/2001/sharpless/facts/ (accessed Nov 26, 2019).
(15) Carvalho, P. O.; Cass, Q. B.; Calafatti, S. A.; Contesini, F. J.; Bizaco, R. Review- Alternatives for the Separation of Drug Enantiomers: Ibuprofen as a Model Compound. Braz. J. Chem. Eng. 2006, 23 (3), 291–300.
(16) The Nobel Prize in Chemistry 2001 https://www.nobelprize.org/prizes/chemistry/2001/noyori/facts/ (accessed Nov 26, 2019).
(17) The Nobel Prize in Chemistry 2001 https://www.nobelprize.org/prizes/chemistry/2001/summary/ (accessed Nov 26, 2019).
(18) The Nobel Prize in Chemistry 2001 https://www.nobelprize.org/prizes/chemistry/2001/knowles/facts/ (accessed Nov 26, 2019).
(19) Xie, R.; Chu, L.-Y.; Deng, J.-G. Membranes and Membrane Processes for Chiral Resolution. Chem. Soc. Rev. 2008, 37 (6), 1243.
(20) Jane Li, Z.; Grant, D. J. W. Relationship Between Physical Properties and Crystal Structures of Chiral Drugs. J. Pharm. Sci. 1997, 86 (10), 1073–1078.
(21) Sögütoglu, L.-C.; Steendam, R. R. E.; Meekes, H.; Vlieg, E.; Rutjes, F. P. J. T. Viedma Ripening: A Reliable Crystallisation Method to Reach Single Chirality. Chem. Soc. Rev. 2015, 44 (19), 6723–6732.
(22) Separation of Enantiomers (Resolution of Racemates) - Chemgapedia http://www.chemgapedia.de/vsengine/vlu/vsc/en/ch/12/oc/vlu_organik/stereochemie/trennung_enantiomere.vlu.html (accessed Nov 27, 2019).
(23) Manimaran, T.; Stahly, G. P.; Jr, R. C. H. Enantiomeric Resolution. US5248813A, September 28, 1993.
(24) Rodrigo, A. A.; Lorenz, H.; Seidel‐Morgenstern, A. Online Monitoring of Preferential Crystallization of Enantiomers. Chirality 2004, 16 (8), 499–508.
(25) Collet, A.; Brienne, M. J.; Jacques, J. Optical Resolution by Direct Crystallization of Enantiomer Mixtures. Chem. Rev. 1980, 80 (3), 215–230.
(26) Pallavicini, M.; Bolchi, C.; Di Pumpo, R.; Fumagalli, L.; Moroni, B.; Valoti, E.; Demartin, F. Resolution of 5-Hydroxymethyl-2-Oxazolidinone by Preferential Crystallization and Investigations on the Nature of the Racemates of Some 2-Oxazolidinone Derivatives. Tetrahedron: Asymmetry 2004, 15 (10), 1659–1665.
(27) Beilles, S.; Cardinael, P.; Ndzié, E.; Petit, S.; Coquerel, G. Preferential Crystallisation and Comparative Crystal Growth Study between Pure Enantiomer and Racemic Mixture of a Chiral Molecule: 5-Ethyl-5-Methylhydantoin. Chem. Eng. Sci. 2001, 56 (7), 2281–2294.
(28) Maier, N. M.; Franco, P.; Lindner, W. Separation of Enantiomers: Needs, Challenges, Perspectives. J. Chromatogr., A, 2001, 906 (1–2), 3–33.
(29) Afonso, C. A. M.; Crespo, J. G. Recent Advances in Chiral Resolution through Membrane-Based Approaches. Angew. Chem. Int. Ed. 2004, 43 (40), 5293–5295.
(30) Jirage, K. B.; Martin, C. R. New Developments in Membrane-Based Separations. Trends Biotechnol., 1999, 17 (5), 197–200.
(31) Gumí, T.; Valiente, M.; Palet, C. Characterization of a Supported Liquid Membrane Based System for the Enantioseparation of SR ‐Propranolol by N ‐Hexadecyl‐ L ‐hydroxyproline. Sep. Sci. Technol., 2005, 39 (2), 431–447.
(32) Gumi, T.; Valiente, M.; Palet, C. Elucidation of -Propranolol Transport Rate and Enantioselectivity through Chiral Activated Membranes. J. Membr. Sci., 2005, 256 (1-2), 150-157.
(33) Keurentjes, J. T. F.; Nabuurs, L. J. W. M.; Vegter, E. A. Liquid Membrane Technology for the Separation of Racemic Mixtures. J. Membr. Sci., 1996, 113 (2), 351–360.
(34) Schurig, V. Separation of Enantiomers by Gas Chromatography. J. Chromatogr., A 2001, 906 (1–2), 275–299.
(35) Nagata, Y.; Iida, T.; Sakai, M. Enantiomeric Resolution of Amino Acids by Thin-Layer Chromatography. J. Mol. Catal. B: Enzym., 2001, 12 (1–6), 105–108.
(36) Francotte, E. R. Enantioselective Chromatography as a Powerful Alternative for the Preparation of Drug Enantiomers. J. Chromatogr., A, 2001, 906 (1–2), 379–397.
(37) Wang, P.; Jiang, S.; Liu, D.; Wang, P.; Zhou, Z. Direct Enantiomeric Resolutions of Chiral Triazole Pesticides by High-Performance Liquid Chromatography. J. Biochem. Biophys. Methods, 2005, 62 (3), 219–230.
(38) Péhourcq, F.; Jarry, C.; Bannwarth, B. Chiral Resolution of Flurbiprofen and Ketoprofen Enantiomers by HPLC on a Glycopeptide-Type Column Chiral Stationary Phase: LC Resolution of Flurbiprofen and Ketoprofen Enantiomers. Biomed. Chromatogr. 2001, 15 (3), 217–222.
(39) Chankvetadze, B.; Kartozia, I.; Yamamoto, C.; Okamoto, Y. Comparative Enantioseparation of Selected Chiral Drugs on Four Different Polysaccharide-Type Chiral Stationary Phases Using Polar Organic Mobile Phases. J. Pharm. Biomed. Anal., 2002, 27 (3–4), 467–478.
(40) Toda, F.; Tanaka, K. Optical Resolution by Inclusion Complex Formation. J. Inclusion Phenom., 1984, 2 (1–2), 91–98.
(41) Mravik, A.; Böcskei, Z.; Katona, Z.; Markovits, I.; Pokol, G.; Menyhárd, D. K.; Fogassy, E. A New Optical Resolution Method: Coordinative Resolution of Mandelic Acid Esters. The Crystal Structure of Calcium Hydrogen (2R,3R)-O,O′-Dibenzoyl Tartrate–2(R)-(–)-Methyl Mandelate. Chem. Commun. 1996, No. 16, 1983–1984.
(42) Mravik, A.; Böcskei, Z.; Katona, Z.; Markovits, I.; Fogassy, E. Coordination-Mediated Optical Resolution of Carboxylic Acids WithO, O′-Dibenzoyltartaric Acid. Angew. Chem. Int. Ed. Engl. 1997, 36 (1314), 1534–1536.
(43) Liao, J.; Peng, X.; Zhang, J.; Yu, K.; Cui, X.; Zhu, J.; Deng, J. Facile Resolution of Racemic Terbutaline and a Study of Molecular Recognition through Chiral Supramolecules Based on Enantiodifferentiating Self-Assembly. Org. Biomol. Chem. 2003, 1 (6), 1080–1085.
(44) Pallavicini, M.; Valoti, E.; Villa, L.; Piccolo, O.; Marchetti, F. Isopropylidene Glycerol Hydrogen Phthalate as a Resolving Agent: A Study of Its Diastereomeric Salts with (S)- and (R)-1-Phenylethylamine. Tetrahedron: Asymmetry 2000, 11 (9), 1957–1964.
(45) Rainsford, K. D. Fifty Years since the Discovery of Ibuprofen. Inflammopharmacology 2011, 19 (6), 293–297.
(46) Herzfeldt, C. D.; Kümmel, R. Dissociation Constants, Solubilities and Dissolution Rates of Some Selected Nonsteroidal Antiinflammatories. Drug Dev. Ind. Pharm. 1983, 9 (5), 767–793.
(47) Potthast, H.; Dressman, J. B.; Junginger, H. E.; Midha, K. K.; Oeser, H.; Shah, V. P.; Vogelpoel, H.; Barends, D. M. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Ibuprofen. J. Pharm. Sci. 2005, 94 (10), 2121–2131.
(48) Ashton, D.; Hilton, M.; Thomas, K. V. Investigating the Environmental Transport of Human Pharmaceuticals to Streams in the United Kingdom. Sci. Total Environ. 2004, 333 (1–3), 167–184.
(49) Evans, A. M. Comparative Pharmacology of S(+)-Ibuprofen and (RS)-Ibuprofen. Clin Rheumatol 2001, 20, 9–14.
(50) Rodríguez-Rojo, S.; Martín, A.; Simplício, A. L.; Matías, A.; Bánsághi, G.; Cocero, M. J. Separation of Ibuprofen Enantiomers by Diastereomic Salt Formation and Antisolvente Precipitation in Supercritical Carbon Dioxide https://www.semanticscholar.org/paper/SEPARATION-OF-IBUPROFEN-ENANTIOMERS-BY-DIASTEREOMIC-Rodríguez-Rojo-Martin/94144b0b04d16db3c63e6d05ca6965b07acda47b.
(51) Bhattacharya, A.; Murphy, D. Temperature Selective Diastereo-Recognition (TSD): Enantiomeric Ibuprofen via Environmentally Benign Selective Crystallization. Org. Process Res. Dev. 2003, 7 (5), 717–722.
(52) Sen, S. E.; Anliker, K. S. 1H NMR Analysis of R/S Ibuprofen by the Formation of Diasteriomeric Pairs: Microscale Stereochemistry Experiment for the Undergraduate Organic Laboratory. J. Chem. Educ. 1996, 73 (6), 569.
指導教授 李度(Tu Lee) 審核日期 2020-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明