以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:93 、訪客IP:18.191.107.181
姓名 易卜欣(Ibrahim Gharib Zakaria Habib) 查詢紙本館藏 畢業系所 應用材料科學國際研究生碩士學位學程 論文名稱 AuPt-Binol Binary Hybrid Nano Composites A proof of concepts in synthesis and catalytic performance
(AuPt-Binol Binary Hybrid Nano Composites A proof of concepts in synthesis and catalytic performance)檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本文摘要
在兩個化學世界有機-無機雜化納米複合材料具有界面,且每個界面都有其特定的特性和應用。有機和無機材料之間的雜化可能導致新的性質和新現象。合成這種雜化納米材料仍然具有挑戰性,特別是對於雙金屬無機對應物的合成。 而在先前的實驗研究中,已通過一種簡單便利的水熱還原方法合成了Au-Binol雜化納米複合材料。也已證明Binol是雜化結構中的還原劑和部分有機結構。在Au-BINOL雜化納米複合材料的合成中,引入CTAC或CTAB調節納米結構 ;它可以控制金屬前驅體的還原速率,從而控制金屬納米晶體的生長。隨著CTAC或CTAB濃度的增加,中心對稱的Au-BINOL納米複合材料(同心結構)傾向於在低濃度下形成,而非中心對稱的Au-BINOL納米複合材料則在較高的濃度下(偏心結構)形成。
在本篇論文中,我們應用了相同的合成概念在Au-Binol實驗研究方面,通過一種簡單便利的方法合成AuPt-Binol。通過這種簡便的方法, 藉由使用BINOL(1,1′-Bi-2-萘酚)作為還原劑、結構導向劑和雜化納米結構中的有機手性對應異構物,來合成AuPt-BINOL雜化納米複合材料。通過簡單地改變封端試劑CTAC的濃度,我們可以調節雜化納米材料的形態以獲得核-殼AuPt納米棒@BINOL或偏心AuPt納米板-BINOL納米結構。同時,為了檢查所形成的AuPt雙金屬結構的催化性能,我們從AuPt納米晶體中去除了BINOL部分,然後將其充填在炭黑上以製備10 wt。%AuPt / C催化劑。用AuPt / C和20wt%Pt / C當作實驗對照組進行4-硝基苯酚還原反應以檢驗它們在催化性能上的優越性。事實證明,AuPt納米棒/ C的反應速率常數大約是AuPt納米板/ C和Pt / C的速率的兩倍。
關鍵字:二元,雜化,BINOL,合金,4-硝基苯酚摘要(英) Abstract
Organic-inorganic hybrid nanocomposites have interfaces between two worlds of chemistry each has its own specific properties and applications. Hybridization between organic and inorganic materials may lead to novel properties and new phenomena. Synthesizing such a kind of hybrid nanomaterials remain challenging, especially for the synthesis of bimetallic inorganic counterpart. In the previous work Au-Binol hybrid nanocomposites have been synthesized by a facile hydrothermal reduction method. It has been proven that Binol is the reducing agent and the organic moiety in the hybrid structure. In the synthesis of Au-BINOL hybrid nanocomposite, CTAC or CTAB was introduced to modulate the nanostructure, it controls the reduction rate of metallic precursor and hence metallic nanocrystal growth. With increasing the concentration of CTAC or CTAB, centrosymmetric Au-BINOL nanocomposite (concentric structure) liked to form at low concentration while the non-centrosymmetric one at higher concentration (eccentric structure).
In this thesis, we applied the same synthesis concepts in Au-Binol work to synthesize AuPt-Binol by a facile method. We provide a facile method for the synthesis of AuPt-BINOL hybrid nanocomposites by using BINOL (1,1′-Bi-2-naphthol) as the reducing agent, structure directing agent, and the organic counterpart in the hybrid nanostructures. By simply altering the concentration of the capping agent CTAC, we could modulate the morphology of the hybrid nanomaterial to obtain either core-shell AuPt nanorod@BINOL or eccentric AuPt nanoplate-BINOL nanostructures. Meanwhile, to examine the catalytic performance of the formed AuPt bimetallic structure, we remove the BINOL moieties from AuPt nanocrystals which were loaded on carbon black to prepare 10 wt.% AuPt/C catalysts. For comparison, 4-nitorphenol reduction reaction was carried out with the AuPt/C and 20 wt% Pt/C examine their superiority in catalytic performances. It turned out that the AuPt nanorods/C have about double reaction rate constant to that of AuPt nanoplates/C and Pt/C.
Keywords: binary, hybrid, BINOL, alloy, 4-Nitrophenol
關鍵字(中) ★ 二元
★ 雜化
★ BINOL
★ 合金
★ 4-硝基苯酚關鍵字(英) ★ binary
★ hybrid
★ BINOL
★ alloy
★ 4-Nitrophenol論文目次 Table of Contents
摘要...................................................... i Abstract.................................................iii
Table of Contents..........................................v
List of Figures...........................................vi Chapter 1 Introduction.....................................1
1.1 Binary Hybrid Nanocomposites...........................1
1.2 Structure Types of Binary Hybrid Nanocomposites........1
1.3 BINOL, Metallic Nanocrystal, and Metal-BINOL Hybrid Nanocomposite..............................................3
1.4 4-Nitrophenol Reduction Reaction.......................8
Chapter 2 Experimental Section............................10
2.1 Chemicals.............................................10
2.2 Materials Synthesis...................................10
2.3 Materials Characterization............................11
2.4 Preparation of Carbon-Supported AuPt Catalysts.................................................12
2.5 Catalytic reduction of 4-Nitrophenol..................13
Chapter 3 Results and Discussion..........................15
3.1 AuPt Moiety in AuPt-Binol Hybrid Nanostructures.......15
3.2 Binol Moiety in AuPt-Binol Hybrid Nanostructures......23
3.3 Catalytic Performances of AuPt-Binol Bimetallic structures................................................27
Chapter 4 Conclusion......................................31 References................................................32參考文獻 References:
[1] Huang, P., Lin, J., Wang, S., Zhou, Z., Li, Z., Wang, Z., … Chen, X.
Biomaterials. (2013), 34(19), 4643–4654.
[2] Schneider, G.; Decher, G.; Nerambourg, N.; Praho, R.; Werts, M. H.
V.; Blanchard-Desce, M. Nano Letters. 2006, 6 (3), 530-536.
[3] Mir, S. H.; Nagahara, L. A.; Thundat, T.; Mokarian-Tabari, P.;
Furukawa, H.; Khosla, A. Journal of the Electrochemical Society. 2018,
165 (8), B3137-B3156.
[4] Zhao, Y.; Yang, D.; Hu, H. C.; Chen, L.; Xu, Y.; Qu, L. L.; Yang, P. P.;
Zhang, Q. Surface Science. 2016, 648, 313-318.
[5] Seh, Z. W.; Liu, S. H.; Zhang, S. Y.; Shah, K. W.; Han, M. Y. Chemical
Communications. 2011, 47 (23), 6689-6691.
[6] Zhao, T. T.; Yu, K.; Li, L.; Zhang, T. S.; Guan, Z. P.; Gao, N. Y.; Yuan,
P. Y.; Li, S.; Yao, S. Q.; Xu, Q. H.; Xu, G. Q. Acs Applied Materials &
Interfaces. 2014, 6 (4), 2700-2708.
[7] He, J. T.; Yap, R. C. C.; Wong, S. Y.; Zhang, Y.; Hu, Y. T.; Chen, C.;
Zhang, X. K.; Wang, J.; Li, X. Crystengcomm. 2016, 18 (28), 5262-
5266.
[8] Liu, S., Bai, S.-Q., Zheng, Y., Shah, K. W., & Han, M.-Y.
ChemCatChem. (2012), 4(10), 1462–1484.
[9] Zhang, L.; Liu, X. C.; Wang, Y. H.; Xing, S. X. Journal of Alloys and
Compounds. 2017, 709, 431-437.
[10] Akimoto, H.; Yamada, S. Tetrahedron. 1971, 27 (24), 5999-+.
[11] Brunel, J. M. Chemical Reviews. 2005, 105 (3), 857-898.
[12] Niu, W.; Duan, Y.; Qing, Z.; Huang, H.; Lu, X. Journal of the
American Chemical Society. 2017, 139 (16), 5817-5826.
[13] Bai, L. Y.; Ouyang, Y. G.; Song, J.; Xu, Z.; Liu, W. F.; Hu, J. Y.; Wang,
Y. L.; Yuan, F. L. Materials. 2019, 12 (9).
[14] Xia, Y., Xiong, Y., Lim, B., & Skrabalak, S. E. Angewandte Chemie
International. (2008), 48(1), 60–103.
[15] Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Nature
Materials. 2009, 8 (2), 132-138.
[16] Rej, S.; Chanda, K.; Chiu, C. Y.; Huang, M. H. Chemistry-a European
Journal. 2014, 20 (48), 15991-15997.
[17] Ghosh, S. K.; Pal, T. Chemical Reviews. 2007, 107 (11), 4797-4862.
[18] Linic, S.; Christopher, P.; Ingram, D. B. Nature Materials. 2011, 10
(12), 911-921.
[19] Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.;
Lucas, C. A.; Markovic, N. M. Science. 2007, 315 (5811), 493-497.
[20] Hammer, B.; Norskov, J. K., Theoretical surface science and catalysis
- Calculations and concepts. In Advances in Catalysis, Vol 45: Impact
of Surface Science on Catalysis, Gates, B. C.; Knozinger, H., Eds.
2000; Vol. 45, pp 71-129.
[21] Patlolla, S. R.; Kao, C. R.; Yeh, A. H.; Lin, H. M.; Chuang, Y. C.; Wen,
Y. S.; Sneed, B. T.; Chen, W. C.; Ong, T. G.; Kuo, C. H. Langmuir.
2018, 34 (45), 13697-13704.
[22] Zhao, P. X.; Feng, X. W.; Huang, D. S.; Yang, G. Y.; Astruc, D.
Coordination Chemistry Reviews. 2015, 287, 114-136.
[23] Li, M., & Chen, G. Nanoscale. (2013), 5(23), 11919.
[24] Gu, S.; Wunder, S.; Lu, Y.; Ballauff, M.; Fenger, R.; Rademann, K.;
Jaquet, B.; Zaccone, A. The Journal of Physical Chemistry C. 2014,
118 (32), 18618-18625.
[25] Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Journal of Physical
Chemistry C. 2010, 114 (19), 8814-8820.
[26] Kumar, A. V. N.; Yin, S. L.; Wang, Z. Q.; Qian, X. Q.; Yang, D. D.;
Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. New Journal of Chemistry.
2019, 43 (24), 9628-9633.
[27] Wu, W.; Tang, Z. H.; Wang, K.; Liu, Z.; Li, L. G.; Chen, S. W.
Electrochimica Acta. 2018, 260, 168-176.
[28] Zhang, L.; Yu, S. N.; Zhang, J. J.; Gong, J. L. Chemical Science. 2016,
7 (6), 3500-3505.
[29] Bian, T.; Zhang, H.; Jiang, Y. Y.; Jin, C. H.; Wu, J. B.; Yang, H.; Yang,
D. R. Nano Letters. 2015, 15 (12), 7808-7815.
[30] Patolla, S. R.; Kao, C. R.; Chen, G. W.; Huang, Y. C.; Chuang, Y. C.;
Sneed, B. T.; Chou, W. C.; Ong, T. G.; Dong, C. L.; Kuo, C. H.
Industrial & Engineering Chemistry Research. 2019, 58 (14), 5479-
5489.指導教授 王冠文 郭俊宏(Kuan-Wen Wang Chun-Hong Kuo) 審核日期 2020-1-21 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare