參考文獻 |
References
[1] Madden, J. D., Lafontaine, S. R., & Hunter, I. W. (1995, October). Fabrication by electrodeposition: building 3D structures and polymer actuators. In MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 77-81). IEEE.
[2] Madden, J. D., & Hunter, I. W. (1996). Three-dimensional microfabrication by localized electrochemical deposition. Journal of microelectromechanical systems, 5(1), 24-32.
[3] Pletcher, D., Greff, R., Peat, R., Peter, L. M., & Robinson, J. (2001). Instrumental methods in electrochemistry. Elsevier.
[4] Atkins, P. W., De Paula, J., & Keeler, J. (2018). Atkins′ physical chemistry. Oxford university press.
[5] Wightman, R. M., Wipf, D. O., & Bard, A. J. (1989). Electroanalytical chemistry, vol. 15. Marcel Dekker, New York.
[6] Brenner, A. (1963). A. Brenner Electrodeposition of Alloys, Vol. II.
[7] Landolt, D. (1994). Electrochemical and materials science aspects of alloy deposition. Electrochimica Acta, 39(8-9), 1075-1090.
[8] Global Energy and CO2 Status Report; International Energy Agency: Paris, France, 2018.
[9] Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/).
[10] Winter, C. J. (2009). Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change. International journal of hydrogen energy, 34(14), S1-S52.
[11] Rajeshwar, K., McConnell, R., & Licht, S. (2008). Solar hydrogen generation. Toward a Renewable Energy Future.
[12] Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International journal of hydrogen energy, 33(15), 4013-4029.
[13] Pilavachi, P. A., Chatzipanagi, A. I., & Spyropoulou, A. I. (2009). Evaluation of hydrogen production methods using the analytic hierarchy process. International Journal of hydrogen energy, 34(13), 5294-5303.
[14] Ivy, J. (2004). Summary of electrolytic hydrogen production: milestone completion report (No. NREL/MP-560-36734). National Renewable Energy Lab., Golden, CO (US).
[15] Barreto, L., Makihira, A., & Riahi, K. (2003). The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy, 28(3), 267-284.
[16] Ramachandran, R., & Menon, R. K. (1998). An overview of industrial uses of hydrogen. International Journal of Hydrogen Energy, 23(7), 593-598.
[17] Eliezer, D., Eliaz, N., Senkov, O. N., & Froes, F. H. (2000). Positive effects of hydrogen in metals. Materials Science and Engineering: A, 280(1), 220-224.
[18] Oldham, K., & Myland, J. (2012). Fundamentals of electrochemical science. Elsevier.
[19] Bockris, J. M., & Conway, B. E. (1981). Electrochemical Materials Science(Comprehensive Treatise of Electrochemistry: Vol. 4).
[20] Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 36(3), 307-326.
[21] Lasia, A. (2010). Hydrogen evolution reaction. Handbook of fuel cells.
[22] Nørskov, J. K., Bligaard, T., Logadottir, A., Kitchin, J. R., Chen, J. G., Pandelov, S., & Stimming, U. (2005). Trends in the exchange current for hydrogen evolution. Journal of The Electrochemical Society, 152(3), J23-J26.
[23] Bonde, J., Moses, P. G., Jaramillo, T. F., Nørskov, J. K., & Chorkendorff, I. (2009). Hydrogen evolution on nano-particulate transition metal sulfides. Faraday discussions, 140, 219-231.
[24] Choi, C. L., Feng, J., Li, Y., Wu, J., Zak, A., Tenne, R., & Dai, H. (2013). WS 2 nanoflakes from nanotubes for electrocatalysis. Nano Research, 6(12), 921-928.
[25] Kong, D., Cha, J. J., Wang, H., Lee, H. R., & Cui, Y. (2013). First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environmental Science, 6(12), 3553-3558.
[26] Kong, D., Wang, H., Lu, Z., & Cui, Y. (2014). CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. Journal of the American Chemical Society, 136(13), 4897-4900.
[27] Zhang, Y., Gong, Q., Li, L., Yang, H., Li, Y., & Wang, Q. (2015). MoSe 2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Research, 8(4), 1108-1115.
[28] Gong, M., & Dai, H. (2015). A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 8(1), 23-39.
[29] Greeley, J., & Mavrikakis, M. (2004). Alloy catalysts designed from first principles. Nature materials, 3(11), 810.
[30] Greeley, J., Nørskov, J. K., & Mavrikakis, M. (2002). Electronic structure and catalysis on metal surfaces. Annual review of physical chemistry, 53(1), 319-348.
[31] LeRoy, R. L., Janjua, M. B. I., Renaud, R., & Leuenberger, U. (1979). Analysis of Time‐Variation Effects in Water Electrolyzers. Journal of The Electrochemical Society, 126(10), 1674-1682.
[32] Soares, D. M., Teschke, O., & Torriani, I. (1992). Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media. Journal of The Electrochemical Society, 139(1), 98-105.
[33] Ahn, S. H., Choi, I., Park, H. Y., Hwang, S. J., Yoo, S. J., Cho, E., ... & Jang, J. H. (2013). Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chemical communications, 49(81), 9323-9325
[34] Hong, S. H., Ahn, S. H., Choi, J., Kim, J. Y., Kim, H. Y., Kim, H. J., … & Kim, S. K. (2015). High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Applied Surface Science, 349, 629-635.
[35] Vogt, H., & Balzer, R. J. (2005). The bubble coverage of gas-evolving electrodes in stagnant electrolytes. Electrochimica Acta, 50(10), 2073-2079.
[36] Ahn, S. H., Hwang, S. J., Yoo, S. J., Choi, I., Kim, H. J., Jang, J. H., …& Kim. J. J. (2012). Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 22(30), 15153-15159.
[37] Benballa, M., Nils, L., Sarret, M., & Müller, C. (2000). Zinc-nickel codeposition in ammonium baths. Surface and Coating Technology, 123(1), 55-61.
[38] Lee, H. Y., & Kim, S. G. (2000). Characteristics of Ni deposition in an alkaline bath for Zn–Ni alloy deposition on steel plates. Surface and Coatings Technology, 135(1), 69-74.
[39] Fukushima, H., Akiyama, T., Higashi, K., Kammel, H., & Karimkhani, M. (1988). Electrodeposition behavior of Zn-Ni alloys from sulfate bath over a wide-range of current-density. Metall, 42(3), 242-247.
[40] Higashi, K., Fukushima, H., Urakawa, T., Adaniya, T., & Matsudo, K. (1981). Mechanism of the electrodeposition of zinc alloys containing a small amount of cobalt. Journal of the Electrochemical Society, 128(10), 2081-2085.
[41] Wu, Z., Fedrizzi, L., & Bonora, P. L. (1996). Electrochemical studies of zinc-nickel codeposition in chloride baths. Surface and Coatings Technology, 85(3), 170-174.
[42] Chen, L., & Lasia, A. (1991). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes. Journal of The Electrochemical Society, 138(11), 3321-3328.
[43] Mosavat, S. H., Shariat, M. H., & Bahrololoom, M. E. (2012). Study of corrosion performance of electrodeposited nanocrystalline Zn-Ni alloy coatings. Corrosion Science, 59, 81-87.
[44] Okamoto, H. (2003). Ni-Zn (nickel-zinc). Journal of phase equilibria, 24(3), 280-281.
[45] Burchardt, T. (2001). Hydrogen evolution on NiPx alloys: the influence of sorbed hydrogen. International Journal of Hydrogen Energy, 26(11), 1193-1198.
[46] Burchardt, T., Hansen, V., & Våland, T. (2001). Microstructure and catalytic activity towards the hydrogen evolution reaction of electrodeposited NiPx alloys. Electrochimica Acta, 46(18), 2761-2766.
[47] Paseka, I. (1995). Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni P (x) electrodes. Electrochimica Acta, 40(11), 1633-1640.
[48] Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988-994.
[49] Hang, T., Hu, A., Ling, H., Li, M., & Mao, D. (2010). Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition. Applied Surface Science, 256(8), 2400-2404.
[50] Xu, J., Zhou, W., Li, Z., Wang, J., & Ma, J. (2009). Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. International Journal of Hydrogen Energy, 34(16), 6646-6654.
[51] Ciou, Y. J., Hwang, Y. R., Lin, J. C., Chen, S. J., & Tseng, Y. T. (2018). Comparison of simulation and experimental results for the deposition orientation in localized electrochemical deposition. Japanese Journal of Applied Physics, 57(11), 117301.
[52] Lide, D. R. (2004). CRC Handbook of Chemistry and Physics. 85th edition. vol. 85, 6-10
[53] Tian, W., Xie, F. Q., Wu, X. Q., & Yang, Z. Z. (2009). Study on corrosion resistance of electroplating zinc–nickel alloy coatings. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 41(3), 251-254.
[54] Chandrasekar, M. S., Srinivasan, S., & Pushpavanam, M. (2009). Properties of zinc alloy electrodeposits produced from acid and alkaline electrolytes. Journal of solid state electrochemistry, 13(5), 781-789.
[55] Hall, D. E. (1983). Electrodeposited Zinc--Nickel Alloy Coatings--a Review. Plat. Surf. Finish., 70(11), 59-65.
[56] Tsybulskaya, L. S., Gaevskaya, T. V., Purovskaya, O. G., & Byk, T. V. (2008). Electrochemical deposition of zinc–nickel alloy coatings in a polyligand alkaline bath. Surface and Coatings Technology, 203(3-4), 234-239.
[57] Fukushima, H., Akiyama, T., Higashi, K., Kammel, H., & Karimkhani, M. (1988). Electrodeposition behavior of Zn-Ni Alloys from sulfate bath over a wide-range of current-density. Metall, 42(3), 242-247.
[58] Higashi, K., Fukushima, H., Urakawa, T., Adaniya, T., & Matsudo, K. (1981). Mechanism of the electrodeposition of zinc alloys containing a small amount of cobalt. Journal of the Electrochemical Society, 128(10), 2081-2085.
[59] Shibuya, A., & Kurimoto, T. (1982). Electrodeposition of Ni--Zn Alloy at High Current Densities. J. Met. Finish. Soc. Jpn., 33(10), 544-549.
[60] Siwek, K. I., Eugénio, S., Santos, D. M. F., Silva, M. T., & Montemor, M. F. (2019). 3D nickel foams with controlled morphologies for hydrogen evolution reaction in highly alkaline media. International Journal of Hydrogen Energy, 44(3), 1701-1709.
[61] Tao, S., Yang, F., Schuch, J., Jaegermann, W., & Kaiser, B. (2018). Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition. ChemSusChem, 11(5), 948-958.
[62] Ngamlerdpokin, K., & Tantavichet, N. (2014). Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media. International Journal of Hydrogen Energy, 39(6), 2505-2515.
[63] Lupi, C., Dell′Era, A., & Pasquali, M. (2009). Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. International Journal of Hydrogen Energy, 34(5), 2101-2106.
[64] Sheela, G., Pushpavanam, M., & Pushpavanam, S. (2002). Zinc–nickel alloy electrodeposits for water electrolysis. International Journal of Hydrogen Energy, 27(6), 627-633.
[65] Shervedani, R. K., & Lasia, A. (1997). Kinetics of Hydrogen Evolution Reaction on Nickel‐Zinc‐Phosphorous Electrodes. Journal of the Electrochemical Society, 144(8), 2652-2657.
[66] Chen, L., & Lasia, A. (1992). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel‐Zinc Powder Electrodes. Journal of the Electrochemical Society, 139(11), 3214-3219.
[67] Choquette, Y., Menard, H., & Brossard, L. (1989). Hydrogen discharge on a Raney nickel composite-coated electrode. International journal of hydrogen energy, 14(9), 637-642.
[68] Nash, P. (1991). Phase diagrams of binary nickel alloys. ASM International(USA), 1991,, 394.
[69] Vassilev, G. P., Gomez-Acebo, T., & Tedenac, J. C. (2000). Thermodynamic optimization of the Ni-Zn system. Journal of phase equilibria, 21(3), 287-301.
[70] Su, X., Tang, N. Y., & Toguri, J. M. (2002). Thermodynamic assessment of the Ni-Zn system. Journal of phase equilibria, 23(2), 140.
[71] Langford, J. I., & Wilson, A. J. C. (1978). Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of applied crystallography, 11(2), 102-113.
[72] Franceschini, E. A., Lacconi, G. I., & Corti, H. R. (2015). Kinetics of the hydrogen evolution on nickel in alkaline solution: new insight from rotating disk electrode and impedance spectroscopy analysis. Electrochimica Acta, 159, 210-218.
[73] Choquette, Y., Brossard, L., Lasia, A., & Menard, H. (1990). Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite‐Coated Electrode by AC Impedance Technique. Journal of The Electrochemical Society, 137(6), 1723-1730.
|