參考文獻 |
(1). Cao, J., Lee, S., Ho, K., Fung, K., Chow, J. C., & Watson, J. G. (2006). Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res, 6(2), 106-122.
(2). Cesari, D., De Benedetto, G., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., . . . Grasso, F. (2018). Seasonal variability of PM2. 5 and PM10 composition and sources in an urban background site in Southern Italy. Science of the Total Environment, 612, 202-213.
(3). Chan, Y., Simpson, R., Mctainsh, G., Vowles, P., Cohen, D., & Bailey, G. (1999). Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmospheric environment, 33(19), 3237-3250.
(4). Cui, M., Chen, Y., Tian, C., Zhang, F., Yan, C., & Zheng, M. J. S. o. t. T. E. (2016). Chemical composition of PM2. 5 from two tunnels with different vehicular fleet characteristics. 550, 123-132.
(5). Deng, J., Xing, Z., Zhuang, B., & Du, K. (2014). Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait. Atmospheric research, 143, 266-278.
(6). Hand, J. L., & Malm, W. C. (2007). Review of the IMPROVE equation for estimating ambient light extinction coefficients: CIRA, Colorado State University.
(7). Huang, X., Liu, Z., Zhang, J., Wen, T., Ji, D., & Wang, Y. J. A. R. (2016). Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. 168, 70-79.
(8). Jacob, D. J., & Winner, D. A. J. A. e. (2009). Effect of climate change on air quality. 43(1), 51-63.
(9). Jiménez-Guerrero, P., Montávez, J. P., Gómez-Navarro, J. J., Jerez, S., & Lorente-Plazas, R. J. A. e. (2012). Impacts of climate change on ground level gas-phase pollutants and aerosols in the Iberian Peninsula for the late XXI century. 55, 483-495.
(10). Khan, M. B., Masiol, M., Formenton, G., Di Gilio, A., de Gennaro, G., Agostinelli, C., & Pavoni, B. (2016). Carbonaceous PM2. 5 and secondary organic aerosol across the Veneto region (NE Italy). Science of the Total Environment, 542, 172-181.
(11). Kim, E., & Hopke, P. K. J. J. o. G. R. A. (2004). Improving source identification of fine particles in a rural northeastern US area utilizing temperature‐resolved carbon fractions. 109(D9).
(12). Li, H. Z., Dallmann, T. R., Li, X., Gu, P., & Presto, A. A. (2017). Urban organic aerosol exposure: Spatial variations in composition and source impacts. Environmental science & technology, 52(2), 415-426.
(13). Li, T.-C., Yuan, C.-S., Huang, H.-C., Lee, C.-L., Wu, S.-P., & Tong, C. J. A. e. (2017). Clustered long-range transport routes and potential sources of PM2. 5 and their chemical characteristics around the Taiwan Strait. 148, 152-166.
(14). Lin, J. J. J. A. E. (2002). Characterization of the major chemical species in PM2. 5 in the Kaohsiung City, Taiwan. 36(12), 1911-1920.
(15). Liu, P., Zhao, C., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., . . . Mildenberger, K. (2011). Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmospheric Chemistry and Physics, 11(7), 3479-3494.
(16). Ma, Q., Wu, Y., Zhang, D., Wang, X., Xia, Y., Liu, X., . . . Wang, Y. J. S. o. t. t. e. (2017). Roles of regional transport and heterogeneous reactions in the PM2. 5 increase during winter haze episodes in Beijing. 599, 246-253.
(17). Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., . . . Matos, M. J. A. E. (2011). OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. 45(34), 6121-6132.
(18). Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M.-C., Decesari, S., . . . Laj, P. J. A. e. (2004). A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. 38(16), 2579-2595.
(19). Safai, P., Raju, M., Rao, P., & Pandithurai, G. J. A. e. (2014). Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. 92, 493-500.
(20). Salameh, D., Detournay, A., Pey, J., Pérez, N., Liguori, F., Saraga, D., . . . Massabò, D. J. A. R. (2015). PM2. 5 chemical composition in five European Mediterranean cities: a 1-year study. 155, 102-117.
(21). Shi, X., Nenes, A., Xiao, Z., Song, S., Yu, H., Shi, G., . . . Russell, A. G. (2019). High-resolution datasets unravel the effects of sources and meteorological conditions on nitrate and its gas-particle partitioning. Environmental science & technology.
(22). Shi, Y., Chen, J., Hu, D., Wang, L., Yang, X., & Wang, X. (2014). Airborne submicron particulate (PM1) pollution in Shanghai, China: Chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility. Science of the Total Environment, 473, 199-206.
(23). Szidat, S., Jenk, T. M., Synal, H. A., Kalberer, M., Wacker, L., Hajdas, I., . . . Baltensperger, U. J. J. o. G. R. A. (2006). Contributions of fossil fuel, biomass‐burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. 111(D7).
(24). Tan, J., Duan, J., Zhen, N., He, K., & Hao, J. J. A. r. (2016). Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. 167, 24-33.
(25). Tan, J., Zhang, L., Zhou, X., Duan, J., Li, Y., Hu, J., & He, K. J. S. o. t. T. E. (2017). Chemical characteristics and source apportionment of PM2. 5 in Lanzhou, China. 601, 1743-1752.
(26). Tao, J., Ho, K.-F., Chen, L., Zhu, L., Han, J., & Xu, Z. (2009). Effect of chemical composition of PM2. 5 on visibility in Guangzhou, China, 2007 spring. Particuology, 7(1), 68-75.
(27). Triantafyllou, A., & Kassomenos, P. J. S. o. t. t. e. (2002). Aspects of atmospheric flow and dispersion of air pollutants in a mountainous basin. 297(1-3), 85-103.
(28). VII, A. T. B., Pabroa, P. C. B., Santos, F. L., Quirit, L. L., Asis, J. L. B., Dy, M. A. K., & Martinez, J. P. G. (2015a). Intercomparison between NIOSH, IMPROVE_A, and EUSAAR_2 protocols: Finding an optimal thermal–optical protocol for Philippines OC/EC samples. Atmospheric Pollution Research, 6(2), 334-342.
(29). VII, A. T. B., Pabroa, P. C. B., Santos, F. L., Quirit, L. L., Asis, J. L. B., Dy, M. A. K., & Martinez, J. P. G. J. A. P. R. (2015b). Intercomparison between NIOSH, IMPROVE_A, and EUSAAR_2 protocols: Finding an optimal thermal–optical protocol for Philippines OC/EC samples. 6(2), 334-342.
(30). Vodička, P., Schwarz, J., Cusack, M., & Ždímal, V. (2015). Detailed comparison of OC/EC aerosol at an urban and a rural Czech background site during summer and winter. Science of the Total Environment, 518, 424-433.
(31). Wang, H., He, Q., Chen, Y., & Kang, Y. (2014). Characterization of black carbon concentrations of haze with different intensities in Shanghai by a three-year field measurement. Atmospheric environment, 99, 536-545.
(32). Wang, H., Qiao, L., Lou, S., Zhou, M., Ding, A., Huang, H., . . . Chen, C. J. J. o. C. P. (2016). Chemical composition of PM2. 5 and meteorological impact among three years in urban Shanghai, China. 112, 1302-1311.
(33). Wang, J., Ogawa, S. J. I. j. o. e. r., & health, p. (2015). Effects of meteorological conditions on PM2. 5 concentrations in Nagasaki, Japan. 12(8), 9089-9101.
(34). Watson, J. G. (2002). Visibility: Science and regulation. Journal of the Air & Waste Management Association, 52(6), 628-713.
(35). Wei, L., Duan, J., Tan, J., Ma, Y., He, K., Wang, S., . . . Zhang, Y. J. S. C. E. S. (2015). Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing. 58(3), 345-355.
(36). Wu, C., & Yu, J. Z. (2016). Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method. Atmospheric Chemistry and Physics, 16(8), 5453-5465.
(37). Xia, Y., Tao, J., Zhang, L., Zhang, R., Li, S., Wu, Y., . . . Xiong, Z. (2017). Impact of size distributions of major chemical components in fine particles on light extinction in urban Guangzhou. Science of the Total Environment, 587, 240-247.
(38). Xianyun, L., ZHANG, W., Zhenya, W., Weixiong, Z., Ling, T., & Xibin, Y. J. J. o. E. S. (2009). Chemical composition and size distribution of secondary organic aerosol formed from the photooxidation of isoprene. 21(11), 1525-1531.
(39). Xie, Y., Liu, Z., Wen, T., Huang, X., Liu, J., Tang, G., . . . Hu, B. J. S. o. T. T. E. (2019). Characteristics of chemical composition and seasonal variations of PM2. 5 in Shijiazhuang, China: Impact of primary emissions and secondary formation. 677, 215-229.
(40). Zhang, Q., Quan, J., Tie, X., Li, X., Liu, Q., Gao, Y., & Zhao, D. (2015). Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Science of the Total Environment, 502, 578-584.
(41). Zhao, T., Yang, L., Yan, W., Zhang, J., Lu, W., Yang, Y., . . . Wang, W. (2017). Chemical characteristics of PM1/PM2. 5 and influence on visual range at the summit of Mount Tai, North China. Science of the Total Environment, 575, 458-466.
(42). Zhao, X., Zhang, X., Xu, X., Xu, J., Meng, W., & Pu, W. J. A. E. (2009). Seasonal and diurnal variations of ambient PM2. 5 concentration in urban and rural environments in Beijing. 43(18), 2893-2900.
(43). Zhu, C.-S., Cao, J.-J., Tsai, C.-J., Shen, Z.-X., Han, Y.-M., Liu, S.-X., & Zhao, Z.-Z. J. S. o. t. T. E. (2014). Comparison and implications of PM2. 5 carbon fractions in different environments. 466, 203-209.
(44). Zhuang, B., Wang, T., Liu, J., Li, S., Xie, M., Han, Y., . . . Physics. (2017). The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China. 17(2).
|