博碩士論文 107322043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.136.97.64
姓名 王友為(You-Wei Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以離心模型試驗探討凹形邊坡之穩定性
相關論文
★ 由地震引起的房屋倒塌率與保險費率試算:以台灣為例★ 台灣累積絕對速度(CAV)地震危害度分析
★ 利用極值理論探討最大可能地震規模:以台灣為例★ 以台灣地震開發的新地動數據庫
★ 影響土壤液化機率之不確定性分析和主要因素:以台灣中部為例★ 根據切片法原理建立穩定數圖表進行邊坡穩定性分析
★ 評估土壤液化最佳地動強度量值★ 基於多個非本地經驗關係預測土壤剪力波速(Vs)下之新方法
★ 考慮不同時間跨度下的台北土層液化機率★ 台灣本地土壤液化數據庫之應用
★ 以SPT-N結合Vs-N之經驗模型進行土壤液化評估★ 機率式地震危害度分析的解析解計算方法
★ 建立台灣CAVSTD-GMPE模型並應用於地震預警
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 平面邊坡已在大地工程中被廣泛研究與使用,然而在自然界中可以觀察到一些具有凹形輪廓的邊坡,此證據表明凹形邊坡可能是更穩定的結構,近幾年的研究也透過數值模擬與物理模型實驗支持此論點。為了進一步探討凹形邊坡之穩定性,本研究使用中央大學地工離心機進行離心模型試驗,在靜態與動態試驗中觀察凹形邊坡與平面邊坡之破壞行為並分析。試驗之邊坡皆由70% 石英矽砂混合30% 高嶺土於最佳含水量下夯實而成,坡角為70o,凹形邊坡之坡面幾何條件由圓弧定義。靜態試驗中,利用人造重力場逐漸增加試體內部之重力,直至邊坡達到臨界坡高而誘發破壞;動態試驗中,在40 g穩定重力場下輸入數個振動事件直至邊坡達到破壞,觀察滑動塊體位移量與破壞行為。
  由試驗結果得知:(1) 靜態試驗中,平面邊坡於45 g產生張力裂縫,凹形邊坡則於50 g產生裂縫。平面邊坡能達到臨界坡高約為12.10 m;凹形邊坡之臨界坡高約為13.86 m。試驗結果顯示坡面幾何條件在靜態下會影響邊坡之穩定性,其中凹形較為穩定。(2) 動態試驗中,透過位移量-振動事件歷時與影像進行分析,凹形邊坡能承受之振動事件較多,且極限位移量為為平面邊坡之1.35倍。由此判斷地震狀態下,凹形邊坡仍是較穩定之配置。
摘要(英) Planar slopes are widely studied in geotechnical engineering. However, some slopes with concave profiles were observed in the field. The phenomenon implies that concave slopes might be a more stable configuration in nature, and recent studies have supported this theory through numerical simulations and physical models. In order to further discuss the stability of concave slopes, several centrifuge modeling tests were conducted in this study by geotechnical centrifuge of NCU, and the failure behaviors in static and dynamic tests can be observed.
  The results show that: (1) In the static test, the tension crack appeared earlier on the top of planar slope. The critical height of the planar slope can reach to 12.10 m, and the concave one is about 13.86 m. The result shows that the geometric condition would affect the stability of the slope under static conditions, and the concave shape is more stable than planar one. (2) In the dynamic test, the concave slope can bear more shaking events, and the allowable displacement is 1.35 times as much as planar one. Therefore, as other studies, this research also shows that the concave slope is a more stable configuration than planar slope under the seismic or static condition.
關鍵字(中) ★ 邊坡穩定
★ 凹形邊坡
★ 地震
★ 離心模型
關鍵字(英) ★ slope stability
★ concave slope
★ earthquake
★ centrifuge modeling
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 論文架構 2
第二章 文獻回顧 3
2-1邊坡破壞模式 3
2-2 極限平衡法(Limit equilibrium method) 5
2-2-1 平面破壞分析 5
2-2-2圓弧破壞分析 7
2-2-3摩擦圓法(Friction circle method) 8
2-2-4切片法(Method of slices) 9
2-3張力裂縫 14
2-4 Taylor穩定性圖表(Taylor’s stability charts) 14
2-4-1不排水狀態下之黏土邊坡(ϕu = 0) 15
2-4-2均質之c-ϕ土壤邊坡 17
2-5凹形邊坡穩定數圖表 18
2-6擬靜態分析(Pseudo-static analysis) 20
2-7 Newmark 位移分析法(Newmark’s displacement analysis method) 22
2-7離心模型原理 23
2-7-1離心模型之基本相似律 24
2-7-2離心模型試驗之模型模擬 27
第三章 實驗設備與步驟 29
3-1 實驗設備與工具 29
3-1-1地工離心機 29
3-1-2離心振動台 31
3-1-3資料擷取系統 31
3-1-4邊坡試驗箱 31
3-1-5固壁式蜂巢式試驗箱 32
3-1-6相機 34
3-1-7夯錘 35
3-1-8感測器 35
3-2試驗土樣 37
3-3試體準備 42
3-3-1配置 42
3-3-2臨時擋土塊體 44
3-3-3試體製作 46
第四章 實驗結果與討論 49
4-1 實驗規劃 49
4-2靜態試驗 51
4-2-1 PSS試驗 52
4-2-2 CSS試驗 54
4-2-3平面邊坡之穩定數 56
4-2-4凹形邊坡之穩定數 57
4-3動態試驗 59
4-3-1 PSD試驗 60
4-3-2 CSD試驗 64
4-4討論 68
4-4-1靜態試驗之穩定數 68
4-4-2靜態試驗之臨界破壞面 69
4-4-3凹形邊坡穩定性之探討 73
4-4-4坡頂影響範圍 74
4-4-5動態試驗之破壞面 74
4-4-6動態試驗之位移量 75
第五章 結論與建議 76
5-1結論 76
5-2建議 77
參考文獻 78
參考文獻 [1] Abramson, L. W., Lee, T. S., Sharma, S., and Boyce, G. M., Slope stability and stabilization methods, John Wiley & Sons (2001).
[2] Das, B., and Sobhan, K, Principles of Geotechnical Engineering, 8th edition., Cengage Learning (2016).
[3] Duncan, J. M., Wright, S. G., and Brandon, T. L., Soil strength and slope stability, John Wiley & Sons (2014).
[4] Fredlund, D. G., and Krahn, J., “Comparison of slope stability methods of analysis,” Canadian geotechnical journal, Vol. 14, No. 3, pp. 429-439 (1977).
[5] Gray, D. H, “Influence of slope morphology on the stability of earthen slopes,” Geo-Congress 2013: Stability and Performance of Slopes and Embankments III, pp. 1895-1904 (2013).
[6] Minh-Canh Tran,「Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake」,碩士論文,國立中央大學土木工程學系,中壢(2017)。
[7] Palmer, S., and Jacka, M., “Newmark block model of seismic displacement of a slope. A valid model for slopes restrained by structural elements?” New Zealand Geotechnical Society Symposium (2008).
[8] Sokolovskiĭ, V. V., Statics of soil media., Butterworths Scientific Publications (1960).
[9] Steward, T., Sivakugan, N., Shukla, S. K., and Das, B. M, “Taylor’s slope stability charts revisited,” International Journal of Geomechanics, Vol. 11, No. 4, pp. 348-352 (2011).
[10] Taylor, R.N., Geotechnical centrifuge technology, 1st edition., CRC Press (1995).
[11] Utili, S., and Nova, R., “On the optimal profile of a slope,” Soils and foundations, Vol. 47, No. 4, pp. 717-729 (2007).
[12] Utili, S., and Crosta, G. B., “Modeling the evolution of natural cliffs subject to weathering: 1. Limit analysis approach,” Journal of Geophysical Research: Earth Surface, Vol. 116, F1 (2011).
[13] Vahedifard, F., Shahrokhabadi, S., and Leshchinsky, D., “Optimal profile for concave slopes under static and seismic conditions,” Canadian geotechnical journal, Vol. 53, No. 9, pp. 1522-1532 (2016).
[14] Varnes, D. J., “Slope movement types and processes,” Special Report, Vol. 176, pp. 11-33 (1978).
[15] Wilson, R. C., and Keefer, D. K., “Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake,” Bulletin of the Seismological Society of America, Vol. 73, No. 3, pp. 863-877 (1985).
[16] 黃紀禎,「地震引致邊坡滑移之分析」,碩士論文,國立臺灣大學土木工程學系,台北市(2003)。
指導教授 王瑞斌(Jui-Pin Wang) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明