博碩士論文 107322012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.119.133.90
姓名 汪彥廷(Yan-Ting Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks)
相關論文
★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究
★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究
★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷
★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證
★ 混凝土缺陷自動修補機器人之研發★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
★ 具即時聽覺辨識之機械手臂應用於螺栓鬆脫檢測之研究★ 生物啟發式攀爬機器人應用於外牆磁磚缺陷檢測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 當混凝土結構物產生裂縫後,經過長期雨淋之後常有滲水之情況發生,此情況也將遭成混凝土結構物內鋼筋之鏽蝕,更嚴重將影響到整體混凝土結構物之強度。在過去已有許多非破壞監測方法及研究來感測混凝土內部之濕度,然而,常遇見之問題有感測儀器昂貴、需要利用纜線連接、需更換電池等。這些問題使得人力及設備維修成本增加,且若結構物本身建於環境不佳人不易到達之位置,將造成監測人員在監測時的工作危險增加。
本論文研究提出以Sensor code為基礎的特高頻無線智慧濕度感測器應用於因混凝土裂縫之滲水感測系統,此系統也將透過破壞指標的方式作為混凝土是否有滲水的判斷機制。希望能透過此研究提供另一種感測系統用於未來之結構健康監測上並解決上述所提出之問題。此研究也提出了以Poly Lactic Acid (PLA)為原料製成3D列印保護殼,提供感測器於混凝土內抵抗高鹼性環境及外力之能力。感測器在黏貼於3D列印保護殼內情況下埋入混泥土圓柱試體內,最遠達到3公尺的感測距離。而在具有鋼筋之一般常用配比之混凝土梁內雖感測距離下降,其感測距離仍達到50公分。在兩種試體情況下,本論文提出之滲水感測機制皆證明為有效的,且其判斷滲水之可信度極高。然而,其中訊號強度及頻率破壞指標尚不能作為判斷機制之一,未來仍須透過修正破壞指標及進行更多實驗來增進其判斷能力。
摘要(英) Water penetration of concrete due to cracking often causes reinforcement corrosion and degradation of the strength of the concrete structure. This thesis, therefore, proposes and tests a sensor code-based UHF RFID smart tag seepage sensing system. Similar sensor code-based smart tags have been applied in many fields, but never previously embedded in concrete for seepage detection. This research also proposes using 3D-printed cases made of Poly Lactic Acid (PLA) to protect smart tags from outer force impact and high alkaline environment. Experiments that involved embedding this case in a cylindrical concrete found that it provided excellent protection under compression, while the maximum read range of the smart tag from within the case was more than 3 meters, i.e., 10 times farther than the uncased tag achieved. In further experiments, 3D-printed cases with smart tags attached inside were embedded in a general beam, with reinforcement bars included. The read range decreased but still got a minimum promising read range of 50 cm, which is still a feasible distance for long-distance monitoring. According to the results, the sensor code damage index indicates the appearance of the seepage with high accuracy, in both cylindrical concrete and beam specimen. However, the RSSI and frequency index fails to be as a sensing indicator. More specimens should be tested and the damage index should be revised to improve the sensing mechanism. In sum, the results of the main experiment indicate that the smart tag’s sensor code damage index can reflect the effect of water seepage due to cracks in concrete effectively.
關鍵字(中) ★ 滲水感測
★ 結構健康監測
★ 無線射頻辨識系統
★ 3D列印技術
關鍵字(英) ★ Smart tag
★ Seepage sensing
★ Structure Health Monitoring
論文目次 摘要 i
Abstract ii
Acknowledgment iii
TABLE OF CONTENTS iv
List of Figures vi
List of Tables x
CHAPTER 1 – INTRODUCTION 1
1.1. Research Background and Problem Statement 1
1.2. Research Contributions and Methodology 2
1.3. Dissertation Outline 3
CHAPTER 2 – LITERATURE REVIEW 4
2.1. Relative Work using RFID Technology 4
2.1.1. Passive Wireless Technology based on Sensing Integrated Circuit 4
2.1.2. Passive Wireless Technology utilize Antenna as Sensing Element 4
2.1.2.1. Utilizing Antenna Sensor on Crack Sensing 5
2.1.2.2. Utilizing Antenna Sensor on Strain Sensing 5
2.2. Utilizing RFID Technology Sensors in Concrete 6
CHAPTER 3 – RESEARCH METHOD 9
3.1. Sensing Principle of Antenna Sensor and Sensor Code-based Smart Tag 9
3.2. System Architecture of the Proposed Seepage Sensing System Using Sensor Code-based Smart Tag 11
3.3. Damage Index 12
CHAPTER 4 – EXPERIMENTAL DESIGN AND PROCESS PLAN 14
4.1. Equipment Development 14
4.1.1. Hardware 14
4.1.2. Software 16
4.1.3. Sensor Code-based Smart Tag 18
4.1.4 Design of 3D-printed Case 18
4.2. Experimental Process and Setup 22
4.2.1. Utilizing Vector Network Analyzer on Performance of Smart Tag 22
4.2.2. Characteristic of RFID Tags under Different Cover Condition Embedded in Cylindrical Concrete 24
4.2.3. Embedded Smart tag with 3D Printing Case Protection in Cylindrical Concrete 27
4.2.3.1 Embedded Smart tag with an 8 mm Thick 3D-printed Case 27
4.2.3.2 Embedded Smart tag with a 3 mm Thick 3D-printed Case 30
4.2.3.3 Relationship of The Parameters of Embedded Smart tag with 3 mm thick 3D-printed Case 33
4.2.4. Embedded 3D-smart Tags in a General Beam 33
4.2.4.1. Experiments of 3D-smart Tag near Metal 34
4.2.4.2. Embedded 3D-smart Tag with Array Deployment in General Beam 35
CHAPTER 5 – RESULT AND DISCUSSIONS 47
5.1. Utilizing Vector Network Analyzer on Performance of Smart tags 47
5.2. Characteristic of Smart tags under Different Cover Condition Embedded in Cylindrical Concrete 49
5.3. Embedded Smart tag with 3D Printing Case Protection in Cylindrical Concrete 51
5.3.1. Sensing function and protection method evaluation with and without the 3D-printed case 51
5.3.2. Embedded Smart tag with an 8 mm Thick 3D-printed Case 53
5.3.3. Embedded Smart tag with a 3 mm Thick 3D-printed Case 65
5.3.4. Relationship of The Parameters of Embedded Smart tag with 3 mm thick 3D-printed Case 83
5.4. Performance of Protected 3D-smart Tag in general Beam 86
5.4.1. The Experiment of 3D-smart Tag Near Metal 87
5.4.2. Embedded 3D-smart Tag with Array Deployment in General Beam 88
CHAPTER 6 - CONCLUSION 102
參考文獻 1. Strangfeld, Christoph, Sergej Johann, Maximilian Müller, and Matthias Bartholmai. Embedded passive RFID-based sensors for moisture monitoring in concrete. in 2017 IEEE SENSORS. 2017. IEEE.
2. Zhou, Shuangxi, Fangming Deng, Lehua Yu, Bing Li, Xiang Wu, and Baiqiang Yin, A novel passive wireless sensor for concrete humidity monitoring. Sensors, 2016. 16(9): p. 1535.
3. Kurs, André, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter Fisher, and Marin Soljačić, Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science, 2007. 317(5834): p. 83-86.
4. Zhou, Shuangxi, Wei Sheng, Fangming Deng, Xiang Wu, and Zhihui Fu, A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring. Sensors, 2017. 17(12): p. 2871.
5. Liu, Yongsheng, Fangming Deng, Yigang He, Bing Li, Zhen Liang, and Shuangxi Zhou, Novel concrete temperature monitoring method based on an embedded passive RFID smart tag. Sensors, 2017. 17(7): p. 1463.
6. Leon-Salas, Walter D and Ceki Halmen, A RFID sensor for corrosion monitoring in concrete. IEEE Sensors Journal, 2015. 16(1): p. 32-42.
7. Huang, Haiying, Flexible wireless antenna sensor: A review. IEEE sensors journal, 2013. 13(10): p. 3865-3872.
8. Yagi, K, N Sato, Y Sato, K Tamakawa, D Minkov, and T Shoji, Detection and evaluation of the depth of surface cracks in conductive materials by using a loop antenna. Applied Physics A, 2003. 77(3-4): p. 461-468.
9. Mohammad, I, V Gowda, H Zhai, and H Huang, Detecting crack orientation using patch antenna sensors. Measurement Science and Technology, 2011. 23(1): p. 015102.
10. Xu, X and H Huang, Multiplexing passive wireless antenna sensors for multi-site crack detection and monitoring. Smart Materials and Structures, 2011. 21(1): p. 015004.
11. Caizzone, Stefano, Emidio DiGiampaolo, and Gaetano Marrocco, Wireless crack monitoring by stationary phase measurements from coupled RFID tags. IEEE Transactions on Antennas and Propagation, 2014. 62(12): p. 6412-6419.
12. Kalansuriya, Prasanna, Rahul Bhattacharyya, Sanjay Sarma, and N Karmakar. Towards chipless RFID-based sensing for pervasive surface crack detection. in 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA). 2012. IEEE.
13. Yi, Xiaohua, Terence Wu, Yang Wang, and Manos M Tentzeris, Sensitivity modeling of an RFID-based strain-sensing antenna with dielectric constant change. IEEE Sensors Journal, 2015. 15(11): p. 6147-6155.
14. Occhiuzzi, C, C Paggi, and G Marrocco, Passive RFID strain-sensor based on meander-line antennas. IEEE Transactions on Antennas and Propagation, 2011. 59(12): p. 4836-4840.
15. Merilampi, Sari, Toni Björninen, Leena Ukkonen, Pekka Ruuskanen, and Lauri Sydänheimo, Embedded wireless strain sensors based on printed RFID tag. Sensor Review, 2011. 31(1): p. 32-40.
16. Rakibet, Osman O, Christina V Rumens, John C Batchelor, and Simon J Holder, Epidermal passive RFID strain sensor for assisted technologies. IEEE Antennas and Wireless Propagation Letters, 2014. 13: p. 814-817.
17. Hasani, M, A Vena, L Sydänheimo, L Ukkonen, and MM Tentzeris, Implementation of a dual-interrogation-mode embroidered RFID-enabled strain sensor. IEEE Antennas and Wireless Propagation Letters, 2013. 12: p. 1272-1275.
18. Kim, Jiseok, Zheng Wang, and Woo Soo Kim, Stretchable RFID for wireless strain sensing with silver nano ink. IEEE Sensors Journal, 2014. 14(12): p. 4395-4401.
19. Caccami, MC and G Marrocco. Electromagnetic characterisation of self-tuning UHF RFID tags for sensing application. in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI). 2016. IEEE.
20. Bartholmai, Matthias, Sergej Johann, Michael Kammermeier, Maximilian Müller, and Christoph Strangfeld. RFID sensor systems embedded in concrete–systematical investigation of the transmission characteristics. in Proceedings of the 8th European Workshop on Structural Health Monitoring, Bilbao, Spain. 2016.
21. Jeong, Seung-Hwan and Hae-Won Son, UHF RFID tag antenna for embedded use in a concrete floor. IEEE Antennas and Wireless Propagation Letters, 2011. 10: p. 1158-1161.
22. Bartholmai, Matthias, Sergej Johann, Michael Kammermeier, Maximilian Müller, and Christoph Strangfeld. Transmission characteristics of RFID sensor systems embedded in concrete. in 2016 IEEE SENSORS. 2016. IEEE.
23. Kallonen, Tommi and Jari Porras. Embedded RFID in product identification. in 5th Workshop on Applications of Wireless Communications. 2007. Citeseer.
24. Johann, Sergej, Christoph Strangfeld, Maximilian Müller, Björn Mieller, and Matthias Bartholmai, RFID sensor systems embedded in concrete–requirements for long–term operation. Materials Today: Proceedings, 2017. 4(5): p. 5827-5832.
25. Lesthaeghe, Tyler J, Samuel Frishman, Stephen D Holland, and Terry J Wipf, RFID tags for detecting concrete degradation in bridge decks. 2013.
26. Chen, Zhongbin, Fangming Deng, and Xiang Wu. A passive rfid smart tag for intelligent concrete temperature control. in 2015 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. 2015. Atlantis Press.
27. Kang, Julian H and Jasdeep Gandhi, Readability test of RFID temperature sensor embedded in fresh concrete. Journal of Civil Engineering and Management, 2010. 16(3): p. 412-417.
28. Laheurte, Jean-Marc, Aladdin Kabalan, Houssam Retima, Eric Piedallu, Fulvio Michelis, and Bérengère Lebental, Embedded uhf rfid tag for durability monitoring in concrete. Wireless Sensor Network, 2016. 8(7): p. 137-144.
29. Murthy, SGN. Batteryless Wireless RFID based embedded sensors for long term monitoring of reinforced concrete structures. in Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany. 2015.
30. Materer, Nicholas, Paul Field, Nicholas Ley, Ahmad Razzaghi Soufiani, Dane Scott, Tyler Ley, and Allen Apblett, Passive wireless detection of corrosive salts in concrete using wire-based triggers. Journal of Materials in Civil Engineering, 2013. 26(5): p. 918-922.
31. Occhiuzzi, Cecilia, Stefano Caizzone, and Gaetano Marrocco, Passive UHF RFID antennas for sensing applications: Principles, methods, and classifcations. IEEE Antennas and Propagation Magazine, 2013. 55(6): p. 14-34.
指導教授 林子軒 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明