博碩士論文 103681001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.15.206.88
姓名 黃翔昱(Hsiang-Yu Huang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋
(Transport mechanism and regional climate feedback of Indochina biomass burning aerosols)
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究★ 臺灣大氣背景PM2.5質量濃度之推估
★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究★ Mapping Surface Solar Radiation with Satellite Data over Taiwan
★ 開發適用於大氣邊界層觀測的無人機系統★ 利用AERONET資料解析中南半島地區氣膠種類及成分
★ 氣膠對臺灣北部暖雲微物理和毛雨的影響★ Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers
★ 氣膠對臺灣中部平原夏季降水日變化之影響★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究
★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation★ 整合無人機與光達觀測解析斗六地區空污事件之演變過程
★ 氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例★ 利用向日葵8號衛星及單層輻射模式反演地面輻射量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去數十年間,中南半島生質燃燒活動對區域空氣品質、大氣能見度和氣候衝擊效應受到廣泛討論。然而,文獻對中南半島生質燃燒傳送機制與區域氣候反饋作用仍未清晰明瞭,為釐清大氣動力與中南半島生質燃燒活動間的交互作用,本研究結合MERRA-2再分析場、衛星和地面觀測,選取MERRA-2 2013-2015年3/1-4/15日瞬時資料與2000-2019年3、4月月平均資料,針對7-SEAS/BASELInE實驗研究區域,分析中南半島生質燃燒活動,本研究提出三項主要成果:(1)生質燃燒傳送機制理論模型;(2)四種生質燃燒傳送的氣候因子;(3)中南半島生質燃燒氣膠效應與區域氣候回饋。
針對成果(1)生質燃燒傳送機制理論模型,透過個案分析大氣氣膠水平與垂直分布,並與連結綜觀尺度大氣(如:鋒面系統、低層噴流(Low Level Jet, LLJ)),結果顯示,3-4月期間大陸性高壓外延使氣旋式環流(相對低壓)生成於中南半島,抬升並累積生質燃燒氣膠於高度3km處,當鋒面生成時,鋒前LLJ將生質燃燒氣膠傳送至下風處,於3-4月期間此過程以3-5天為循環周而復始。而在垂直方向上,鋒面系統南側700 hPa LLJ攜帶生質燃燒氣膠,同時鋒面南側所伴隨的大氣上升運動,將使生質燃燒氣膠保留於自由大氣層內,直到氣膠擴散至鋒面北側時,下沉氣流將氣膠傳送至地表
針對成果(2)生質燃燒傳送的氣候因子,透過合成分析與主成分分析法,分析長期氣候生質燃燒污染物與區域氣候之關係性,將氣候對生質燃燒傳送的影響歸類為四項因子:(1)孟加拉灣反氣旋環流、(2)南海反氣旋環流、(3)太平洋副熱帶高壓與(4)中南半島至台灣強西風帶。中南半島至台灣強西風帶與鋒前LLJ發生頻率正相關,當天氣場中鋒前LLJ與生質燃燒傳送事件頻率增加時,在氣候場中強西風帶則會更加增強。孟加拉灣反氣旋環流增強時,造成穩定大氣並減少降水,增強源區生質燃燒活動。南海反氣旋環流增強時,將利於中南半島至台灣強西風帶增強,同時促使南海區域大氣穩定,減少氣膠移除作用,使生質燃燒氣膠傳送至下風處。太平洋副熱帶高壓強弱與中南半島至台灣西風帶強弱相關,當太平洋副熱帶高壓增強時,連帶強化中南半島至台灣西風帶,反之亦然。而當太平洋副熱帶高壓向北偏移時,則會造成中南半島至台灣西風帶產生南風分量,改變生質燃燒傳送路徑,使生質燃燒累積於源區。生質燃燒傳送氣候特徵因子可進一步與大尺度氣候特徵指數連結,結果顯示生質燃燒活動受聖嬰現象(ENSO)影響,而印度洋偶極振盪(Indian Ocean Dipole)與生質燃燒活動無明顯相關。在聖嬰年(El Niño)孟加拉灣反氣旋環流、南海反氣旋環流及中南半島至台灣強西風帶增強,造成生質燃燒活動增強,且更容易傳送至南海及台灣區域。
針對成果(3)中南半島生質燃燒氣膠效應與區域氣候回饋,生質燃燒氣膠長期滯留於中南半島至台灣700 hPa處,對中南半島北部大氣短波氣膠輻射效應(ARE)造成20%的大氣層內淨輻射通量改變,此結果間接說明,中南半島生質燃燒期間ARE在大氣能量平衡上扮演重要角色,並造成地球環境系統某種程度上熱力與動力調整。由3-4月中南半島生質燃燒與5月份夏季季風相關性顯示,中南半島生質燃燒排放與傳送增強時,夏季季風則會同時增強,而生質燃燒氣膠累積於中南半島時,夏季季風則會減弱,說明中南半島生質燃燒氣膠效應,可能進一步影響5月夏季季風肇始。然而,氣膠效應對於區域氣候變遷的回饋機制相當複雜,加入數值模式的模擬驗證,可以做為未來生質燃燒氣膠反饋作用的主要研究方向。
摘要(英) Impacts of long-range transported biomass-burning aerosols from Indochina on regional air quality, atmospheric visibility and climate effects have been discussed extensively in the literature over the past few decades. However, the transport mechanism and regional climate feedback of Indochina biomass-burning aerosols is still not fully understood. To clarify the interaction between atmospheric dynamics and biomass-burning aerosols in the Indochina, we present results of the MERRA-2 dataset, satellite and in-situ observation in spring 2000-2019 over the 7-SEAS/BASELInE experiment region. This study finally proposes three main analysis results of the biomass-burning activities in the Indochina: (1) A 3D conceptual model of biomass-burning transport mechanism; (2) Four meteorological factors attributed to biomass-burning activities; (3) The biomass-burning aerosol effect and its regional climate feedback.
For the achievement of (1) 3D conceptual model of biomass-burning transport mechanism, we analyzed the horizontal and vertical distribution of biomass-burning aerosols and linked the synoptic-dynamic meteorology (e.g. frontal system, Low Level Jet (LLJ)) to aerosol transport. From March to April, the cold frontal system extends from Japan to the South China Sea, and the postfront accompanied a strong westerly wind belt at approximately 700 hPa (3 km), transporting biomass-burning aerosols from the source region (i.e., northern Indochina) to the sink region (i.e., Taiwan and West Pacific) via the LLJ stream. The 700 hPa LLJ may have carried the biomass-burning plumes located south of the frontal system and accompanied the upward/downward motion south/north of the frontal system. This downward motion at the north side of the frontal system brought may bring pollution down to the surface and increased surface PM concentration. The life cycle of the synoptic weather pattern is approximately 3-5 days and consistently repeatable throughout March to April.
For the achievement of (2) the four meteorological factors attributed to biomass-burning activities, we identify those factors by using long-term data with composite analysis, principal components analysis and correlation analysis. The four factors include: (1) anticyclone (Monsoon trough) in the Bay of Bengal, (2) relative anticyclone in the South China Sea, (3) Pacific subtropical high, and (4) westerlies from Indochina to Taiwan. The strong westerlies from Indochina to Taiwan positively correlates with the frequency of the postfront LLJ. When the postfront LLJ and biomass-burning transport events occur frequently in the synoptic-scale meteorology, the westerlies from Indochina to Taiwan will also increase in the climate field. The increasing anticyclone over the Bay of Bengal tends to enhance atmospheric stability, reduce precipitation, and turns to strengthen biomass-burning activities in the source region. The increasing relative anticyclone in the South China Sea can enhance westerly from Indochina to Taiwan. At the same time, the relative anticyclone can promote the stability of atmosphere, reduce the deposition efficiency of aerosol, and support the biomass-burning aerosol transport to the downwind region. The strength of the Pacific subtropical high positively correlates with the strength of the westerlies from Indochina to Taiwan. When the Pacific subtropical high northward shift, the circulation generates the southerly wind from Indochina to Taiwan, which changes the biomass-burning transport path and location. We further assess the correlation of attributed factors and different large-scale climate indexes (e.g. ENSO, Indian Ocean Dipole (IOD)). As a result, the biomass-burning activity has a stronger correlation with ENSO, but weak correlation with IOD. In the El Niño year, the increasing anticyclonic in the Bay of Bengal and the South China Sea accompanied the stronger westerlies from Indochina to Taiwan, which enhanced the biomass-burning activities and aerosol transport to the South China Sea and Taiwan.
For the achievement of (3) the biomass-burning aerosol effect and its regional climate feedback, as the aerosol frequently located from Indochina to Taiwan at approximately 700 hPa, which can increase the net radiation flux by 20% in the atmosphere as so-called the shortwave aerosol radiation effect (ARE). Those ARE play an important role in the atmospheric energy budget during biomass-burning period, and adjust the thermal and dynamic in the earth′s environmental system. Furthermore, it can be found that the summer monsoon pattern in May has linkage with biomass-burning activities from March to April. The summer monsoon will be increased when the biomass-burning emissions and transport enhance, and it will be weakened when biomass-burning accumulates in the Indochina. The correlation illustrates that the biomass-burning aerosol feedback may change the precipitation and affect the summer monsoon onset. However, the understanding of the aerosol effect is limited by only using MERRA-2 reanalysis data. To gain a better understanding of the biomass-burning aerosol effect and regional climate feedback mechanism, utilizing a numerical study would greatly benefit in the future.
關鍵字(中) ★ 生質燃燒氣膠
★ 氣膠長程傳送
★ 低層噴流
★ 氣膠輻射效應
關鍵字(英) ★ Biomass-burning aerosol
★ Aerosol long-range transport
★ Low-level jet
★ Aerosol radiative effect
論文目次 摘要 i
Abstract iii
誌謝 vi
目錄 vii
圖目錄 ix
表目錄 xii
符號說明 xiii

一、前言 1
1-1 研究動機 1
1-2 研究目的 2
二、文獻回顧 4
2-1 全球模式相關研究 5
2-2 MERRA-2再分析場可信度分析 8
2-3 生質燃燒氣膠相關研究 10
2-4 生質燃燒與區域氣候衝擊 12
2-5 7-SEAS相關文獻回顧 15
三、研究方法 18
3-1 研究範圍與選用時間 19
3-2 MERRA-2再分析場 22
3-3 觀測資料與氣候指數選用 30
3-4 統計分析方法 35
四、生質燃燒傳送特性及動力機制 38
4-1 MERRA-2可信度評估 38
4-2 生質燃燒氣膠空間分布 40
4-3 生質燃燒傳送之綜觀大氣動力機制 42
4-4 生質燃燒傳送與大氣環流 49
4-5 生質燃燒傳送機制模型 56
五、生質燃燒傳送氣候影響因素 58
5-1 生質燃燒氣膠光學特性長期變化 58
5-2 生質燃燒傳送形態分析 66
5-3 生質燃燒傳送主成分分析(EOF) 76
5-4 生質燃燒活動、ENSO與IOD相關性 81
5-5 生質燃燒活動之氣候因素 84
六、生質燃燒氣膠對區域氣候之衝擊 88
6-1 生質燃燒氣膠輻射交互作用 88
6-2 生質燃燒氣膠-輻射-雲交互作用 96
七、結論與展望 101
7-1 結論 101
7-2 展望 103
參考文獻 105
附錄A 氣膠光學特徵參數 119
參考文獻 Ackerman, A. S., O. Toon, D. Stevens, A. Heymsfield, V. Ramanathan, and E. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288(5468), 1042-1047.
Albrecht, B. A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science, 245(4923), 1227-1230.
Anderson, T., D. Covert, S. Marshall, M. Laucks, R. Charlson, A. Waggoner, J. Ogren, R. Caldow, R. Holm, and F. Quant (1996), Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, Journal of Atmospheric and Oceanic Technology, 13(5), 967-986.
Andreae, M., and A. Gelencsér (2006), Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols.
Ångström, A. (1964), The parameters of atmospheric turbidity, Tellus, 16(1), 64-75, doi:10.1111/j.2153-3490.1964.tb00144.x.
Babu, S. S., J. P. Chaubey, K. Krishna Moorthy, M. M. Gogoi, S. K. Kompalli, V. Sreekanth, S. Bagare, B. C. Bhatt, V. K. Gaur, and T. P. Prabhu (2011), High altitude (∼ 4520 m amsl) measurements of black carbon aerosols over western trans‐Himalayas: Seasonal heterogeneity and source apportionment, Journal of Geophysical Research: Atmospheres, 116(D24).
Ballhorn, U., F. Siegert, M. Mason, and S. Limin (2009), Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands, Proceedings of the National Academy of Sciences, 106(50), 21213-21218.
Bian, H., M. Chin, D. A. Hauglustaine, M. Schulz, G. Myhre, S. E. Bauer, M. T. Lund, V. A. Karydis, T. L. Kucsera, and X. Pan (2017), Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmospheric Chemistry and Physics, 17(21), 12911.
Bond, T. C., and R. W. Bergstrom (2006), Light absorption by carbonaceous particles: An investigative review, Aerosol science and technology, 40(1), 27-67.
Bond, T. C., S. J. Doherty, D. Fahey, P. Forster, T. Berntsen, B. DeAngelo, M. Flanner, S. Ghan, B. Kärcher, and D. Koch (2013), Bounding the role of black carbon in the climate system: A scientific assessment, Journal of Geophysical Research: Atmospheres, 118(11), 5380-5552.
Bosilovich, M. G., et al. (2015), MERRA-2: Initial Evaluation of the Climate, Technical Report Series on Global Modeling and Data Assimilation, 43.
Buchard, V., A. M. da Silva, C. A. Randles, P. Colarco, R. Ferrare, J. Hair, C. Hostetler, J. Tackett, and D. Winker (2016), Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States, Atmospheric Environment, 125, Part A, 100-111, doi:http://dx.doi.org/10.1016/j.atmosenv.2015.11.004.
Buchard, V., A. M. da Silva, P. R. Colarco, A. Darmenov, C. A. Randles, R. Govindaraju, O. Torres, J. Campbell, and R. Spurr (2014), Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmospheric Chemistry and Physics, 14(23), 32177-32231, doi:10.5194/acpd-14-32177-2014.
Buchard, V., C. Randles, A. Da Silva, A. Darmenov, P. Colarco, R. Govindaraju, R. Ferrare, J. Hair, A. Beyersdorf, and L. Ziemba (2017), The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies, Journal of Climate, 30(17), 6851-6872.
Carslaw, K., O. Boucher, D. Spracklen, G. Mann, J. Rae, S. Woodward, and M. Kulmala (2010), A review of natural aerosol interactions and feedbacks within the Earth system, Atmospheric Chemistry & Physics, 10(4).
Che, H., K. Gui, X. Xia, Y. Wang, B. N. Holben, P. Goloub, E. Cuevas Agulló, H. Wang, Y. Zheng, and H. Zhao (2019), Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth.
Chen, G. T.-J., C.-C. Wang, and D. T.-W. Lin (2005), Characteristics of low-level jets over northern Taiwan in Mei-Yu season and their relationship to heavy rain events, Monthly weather review, 133(1), 20-43.
Chen, G. T.-J., and C.-C. Yu (1988), Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season, Monthly weather review, 116, 884-891.
Chen, Y., A. Hall, and K. N. Liou (2006), Application of three-dimensional solar radiative transfer to mountains, Journal of Geophysical Research: Atmospheres, 111(D21), D21111, doi:10.1029/2006jd007163.
Chin, M., P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima (2002), Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements, Journal of the Atmospheric Sciences, 59(3), 461-483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.
Chou, M.-D., and M. J. Suarez (1999), A Solar Radiation Parameterization for Atmospheric Studies, NASA Technical Memorandum, Volume 15.
Chuang, M.-T., J. S. Fu, C.-T. Lee, N.-H. Lin, Y. Gao, S.-H. Wang, G.-R. Sheu, T.-C. Hsiao, J.-L. Wang, and M.-C. Yen (2015a), The simulation of long-range transport of biomass burning plume and short-range transport of anthropogenic pollutants to a mountain observatory in East Asia during the 7-SEAS/2010 Dongsha Experiment, Aerosol Air Qual. Res., doi, 10.
Chuang, M.-T., J. S. Fu, N.-H. Lin, C.-T. Lee, Y. Gao, S.-H. Wang, G.-R. Sheu, T.-C. Hsiao, J.-L. Wang, and M.-C. Yen (2015b), Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment, Atmospheric Environment, 112, 294-305.
Chuang, M.-T., et al. (2014), Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin, Atmospheric Environment, 89, 507-516, doi:10.1016/j.atmosenv.2013.11.066.
Cohn, S. E., A. Da Silva, J. Guo, M. Sienkiewicz, and D. Lamich (1998), Assessing the effects of data selection with the DAO physical-space statistical analysis system, Monthly Weather Review, 126(11), 2913-2926.
Colarco, P., A. da Silva, M. Chin, and T. Diehl (2010), Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth, Journal of Geophysical Research: Atmospheres, 115(D14), D14207, doi:10.1029/2009JD012820.
D′Errico, M., C. Cagnazzo, P. G. Fogli, W. K. Lau, J. von Hardenberg, F. Fierli, and A. Cherchi (2015), Indian monsoon and the elevated‐heat‐pump mechanism in a coupled aerosol‐climate model, Journal of Geophysical Research: Atmospheres, 120(17), 8712-8723.
Darmenov, A., and A. da Silva (2013), The quick fire emissions dataset (QFED)–documentation of versions 2.1, 2.2 and 2.4, NASA Technical Report Series on Global Modeling and Data Assimilation, NASA TM-2013-104606, 32, 183.
Dee, D. P., and A. M. da Silva (1999), Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology, Monthly Weather Review, 127(8), 1822-1834.
Dee, D. P., S. M. Uppala, A. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. Balmaseda, G. Balsamo, and d. P. Bauer (2011), The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly Journal of the royal meteorological society, 137(656), 553-597.
Derimian, Y., O. Dubovik, X. Huang, T. Lapyonok, P. Litvinov, A. B. Kostinski, P. Dubuisson, and F. Ducos (2016), Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics, Atmos. Chem. Phys., 16(9), 5763-5780, doi:10.5194/acp-16-5763-2016.
Diehl, T., A. Heil, M. Chin, X. Pan, D. Streets, M. Schultz, and S. Kinne (2012), Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO 2 from 1980 to 2010 for hindcast model experiments, Atmospheric Chemistry and Physics Discussions, 12(9), 24895-24954.
Dubovik, O., et al. (2006), Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, Journal of Geophysical Research: Atmospheres, 111(D11), D11208, doi:10.1029/2005jd006619.
Duncan, B. N., R. V. Martin, A. C. Staudt, R. Yevich, and J. A. Logan (2003), Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, Journal of Geophysical Research: Atmospheres, 108(D2), ACH 1-1-ACH 1-22.
Eck, T., B. Holben, J. Reid, O. Dubovik, A. Smirnov, N. O′neill, I. Slutsker, and S. Kinne (1999), Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, Journal of Geophysical Research: Atmospheres, 104(D24), 31333-31349.
Eck, T. F., et al. (2005), Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, Journal of Geophysical Research: Atmospheres, 110(D6), D06202, doi:10.1029/2004jd005274.
Ervens, B., B. Turpin, and R. Weber (2011), Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmospheric Chemistry & Physics Discussions, 11(8).
Fu, J. S., N. C. Hsu, Y. Gao, K. Huang, C. Li, N. H. Lin, and S. C. Tsay (2012), Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling, Atmos. Chem. Phys., 12(9), 3837-3855, doi:10.5194/acp-12-3837-2012.
Gelaro, R., W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, and R. Reichle (2017), The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), Journal of Climate, 30(14), 5419-5454.
Gerber, H. (1985), Relative-humidity parameterization of the Navy aerosol model (NAM), NRL Rep. 8956, Natl. Res. Lab., Washington, DC.
Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin (2001), Sources and distributions of dust aerosols simulated with the GOCART model, Journal of Geophysical Research: Atmospheres, 106(D17), 20255-20273, doi:10.1029/2000JD000053.
Gong, S. (2003), A parameterization of sea‐salt aerosol source function for sub‐and super‐micron particles, Global biogeochemical cycles, 17(4).
Haywood, J., and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Reviews of Geophysics, 38(4), 513-543, doi:10.1029/1999rg000078.
Henriksson, S., J.-P. Pietikainen, A.-P. Hyvarinen, P. Raisanen, K. Kupiainen, J. Tonttila, R. Hooda, H. Lihavainen, D. O′Donnell, and L. Backman (2014), Spatial distributions and seasonal cycles of aerosol climate effects in India seen in a global climate-aerosol model, Atmospheric Chemistry and Physics, 14(18), 10177-10192.
Herckes, P., K. T. Valsaraj, and J. L. Collett Jr (2013), A review of observations of organic matter in fogs and clouds: Origin, processing and fate, Atmospheric research, 132, 434-449.
Hess, M., P. Koepke, and I. Schult (1998), Optical Properties of Aerosols and Clouds: The Software Package OPAC, Bulletin of the American Meteorological Society, 79(5), 831-844, doi:10.1175/1520-0477(1998)079<0831:opoaac>2.0.co;2.
Holben, B. N., T. F. Eck, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, and O. Dubovik (2006), AERONET′s version 2.0 quality assurance criteria, paper presented at Asia-Pacific Remote Sensing Symposium, International Society for Optics and Photonics.
Holben, B. N., et al. (1998), AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sensing of Environment, 66(1), 1-16, doi:http://dx.doi.org/10.1016/S0034-4257(98)00031-5.
Hsu, N., R. Gautam, A. Sayer, C. Bettenhausen, C. Li, M. Jeong, S. Tsay, and B. Holben (2012), Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010.
Huang, H. Y., S. H. Wang, W. X. Huang, N. H. Lin, M. T. Chuang, A. M. da Silva, and C. M. Peng (2020), Influence of Synoptic‐Dynamic Meteorology on the Long‐Range Transport of Indochina Biomass Burning Aerosols, Journal of Geophysical Research: Atmospheres, 125(3), e2019JD031260.
Huang, K., J. S. Fu, N. C. Hsu, Y. Gao, X. Dong, S.-C. Tsay, and Y. F. Lam (2013), Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA, Atmospheric Environment, 78, 291-302, doi:http://dx.doi.org/10.1016/j.atmosenv.2012.03.048.
Huang, W. R., S. H. Wang, M. C. Yen, N. H. Lin, and P. Promchote (2016), Interannual variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts, Journal of Geophysical Research: Atmospheres, 121(17).
Hyslop, N. P. (2009), Impaired visibility: the air pollution people see, Atmospheric Environment, 43(1), 182-195, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.09.067.
IPCC (2007), Climate Change 2007, The Physical Science Basis, Summary for Policymakers, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. Alley et al.
IPCC (2013), Working Group I Contribution to the IPCC Fifth Assessment Report: Climate Change 2013: The Physical Science Basis, Summary for Policymakers, IPCC, UN.
Jacob, D. J., J. H. Crawford, M. M. Kleb, V. S. Connors, R. J. Bendura, J. L. Raper, G. W. Sachse, J. C. Gille, L. Emmons, and C. L. Heald (2003), Transport and Chemical Evolution over the Pacific (TRACE‐P) aircraft mission: Design, execution, and first results, Journal of Geophysical Research: Atmospheres (1984–2012), 108(D20).
Jacobson, M. Z. (2000), A physically‐based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, Geophysical Research Letters, 27(2), 217-220.
Jin, Q., and S. Pryor (2020), Long‐Term Trends of High Aerosol Pollution Events and Their Climatic Impacts in North America Using Multiple Satellite Retrievals and Modern‐Era Retrospective Analysis for Research and Applications version 2, Journal of Geophysical Research: Atmospheres, 125(4), e2019JD031137.
Jin, Q., J. Wei, Z.-L. Yang, B. Pu, and J. Huang (2015), Consistent response of Indian summer monsoon to Middle East dust in observations and simulations.
Kanakidou, M., J. Seinfeld, S. Pandis, I. Barnes, F. Dentener, M. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, and C. Nielsen (2005), Organic aerosol and global climate modelling: a review.
Kim, M.-K., W. K. M. Lau, M. Chin, K.-M. Kim, Y. C. Sud, and G. K. Walker (2006), Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring, Journal of Climate, 19(18), 4700-4718, doi:10.1175/JCLI3871.1.
Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, and H. Endo (2015), The JRA-55 reanalysis: General specifications and basic characteristics, Journal of the Meteorological Society of Japan. Ser. II, 93(1), 5-48.
Koepke, P., J. Gasteiger, and M. Hess (2015), Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC, Atmospheric Chemistry and Physics, 15(10), 5947-5956.
Lai, Y.-J., M.-D. Chou, and P.-H. Lin (2010), Parameterization of topographic effect on surface solar radiation, Journal of Geophysical Research: Atmospheres, 115(D1), D01104, doi:10.1029/2009JD012305.
Laskin, A., J. Laskin, and S. A. Nizkorodov (2015), Chemistry of atmospheric brown carbon, Chemical reviews, 115(10), 4335-4382.
Lau, K. M., and K. M. Kim (2006), Observational relationships between aerosol and Asian monsoon rainfall, and circulation, Geophysical Research Letters, 33(21).
Lau, K. M., M. K. Kim, and K. M. Kim (2006), Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau, Clim Dyn, 26(7-8), 855-864, doi:10.1007/s00382-006-0114-z.
Lau, W. K. (2016), The aerosol-monsoon climate system of Asia: A new paradigm, Journal of Meteorological Research, 30(1), 1-11.
Lee, C.-T., et al. (2011a), The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan, Atmospheric Environment, 45(32), 5784-5794, doi:10.1016/j.atmosenv.2011.07.020.
Lee, D., Y. C. Sud, L. Oreopoulos, K. M. Kim, W. K. Lau, and I. S. Kang (2014), Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia, Atmos. Chem. Phys., 14(13), 6853-6866, doi:10.5194/acp-14-6853-2014.
Lee, W.-L., and K. N. Liou (2007), A Coupled Atmosphere–Ocean Radiative Transfer System Using the Analytic Four-Stream Approximation, Journal of the Atmospheric Sciences, 64(10), 3681-3694, doi:10.1175/jas4004.1.
Lee, W.-L., K. N. Liou, and A. Hall (2011b), Parameterization of solar fluxes over mountain surfaces for application to climate models, Journal of Geophysical Research: Atmospheres, 116(D1), D01101, doi:10.1029/2010jd014722.
Li, J., B. Carlson, O. Dubovik, and A. Lacis (2014), Recent trends in aerosol optical properties derived from AERONET measurements, Atmos. Chem. Phys, 14(22), 12271-12289.
Lin, C.-Y., H.-M. Hsu, Y. Lee, C.-H. Kuo, Y.-F. Sheng, and D. Chu (2009), A new transport mechanism of biomass burning from Indochina as identified by modeling studies, Atmospheric Chemistry & Physics, 9(20).
Lin, N.-H., A. M. Sayer, S.-H. Wang, A. M. Loftus, T.-C. Hsiao, G.-R. Sheu, N. C. Hsu, S.-C. Tsay, and S. Chantara (2014), Interactions between biomass-burning aerosols and clouds over Southeast Asia: Current status, challenges, and perspectives, Environmental Pollution, 195, 292-307.
Lin, N.-H., et al. (2013), An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS, Atmospheric Environment, 78(0), 1-19, doi:http://dx.doi.org/10.1016/j.atmosenv.2013.04.066.
Liou, K. N., W.-L. Lee, and A. Hall (2007), Radiative transfer in mountains: Application to the Tibetan Plateau, Geophysical Research Letters, 342(23), doi:10.1029/2007gl031762.
Müller, T., J. Henzing, G. d. Leeuw, A. Wiedensohler, A. Alastuey, H. Angelov, M. Bizjak, M. Collaud Coen, J. Engström, and C. Gruening (2011), Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops.
Mayer, B., and A. Kylling (2005), Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5(7), 1855-1877, doi:10.5194/acp-5-1855-2005.
Meng, Z., P. Yang, G. W. Kattawar, L. Bi, K. Liou, and I. Laszlo (2010), Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations, Journal of Aerosol Science, 41(5), 501-512.
Mobley, C. D. (1994), Light and Water: Radiative Transfer in Natural Waters. Academic, 592 pp., San Diego.
Mortier, A., et al. (2020), Evaluation of climate model aerosol trends with ground-based observations over the last two decades - an AeroCom and CMIP6 analysis, Atmos. Chem. Phys. Discuss., 2020, 1-36, doi:10.5194/acp-2019-1203.
Müller, T., J. Henzing, G. d. Leeuw, A. Wiedensohler, A. Alastuey, H. Angelov, M. Bizjak, M. Collaud Coen, J. Engström, and C. Gruening (2011), Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops.
Myhre, G., et al. (2013), Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13(4), 1853-1877, doi:10.5194/acp-13-1853-2013.
O′Neill, N. T., A. Ignatov, B. Holben, and T. Eck (2000), The lognormal distribution as a reference for reporting aerosol optical depth statistics; Empirical tests using multi‐year, multi‐site AERONET Sunphotometer data, Geophysical Research Letters, 27(20), 3333-3336.
Ogren, J. A., J. Wendell, E. Andrews, and P. J. Sheridan (2017), Continuous light absorption photometer for long-term studies, Atmospheric Measurement Techniques, 10(12), 4805.
Oltmans, S., B. Johnson, J. Harris, A. M. Thompson, H. Liu, C. Chan, H. Vömel, T. Fujimoto, V. Brackett, and W. Chang (2004), Tropospheric ozone over the North Pacific from ozonesonde observations, Journal of Geophysical Research: Atmospheres, 109(D15).
Page, S. E., F. Siegert, J. O. Rieley, H.-D. V. Boehm, A. Jaya, and S. Limin (2002), The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, 420(6911), 61-65.
Pawson, S., I. Stajner, S. R. Kawa, H. Hayashi, W. W. Tan, J. E. Nielsen, Z. Zhu, L. P. Chang, and N. J. Livesey (2007), Stratospheric transport using 6‐h‐averaged winds from a data assimilation system, Journal of Geophysical Research: Atmospheres (1984–2012), 112(D23).
Pincus, R., and M. B. Baker (1994), Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature, 372(6503), 250-252.
Provençal, S., V. Buchard, A. M. da Silva, R. Leduc, N. Barrette, E. Elhacham, and S.-H. Wang (2017), Evaluation of PM2. 5 Surface Concentration Simulated by Version 1 of the Nasa′s MERRA Aerosol Reanalysis Over Israel and Taiwan, Aerosol and Air Quality Research.
Ralph, F. M., P. J. Neiman, and R. Rotunno (2005), Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics, Monthly weather review, 133(4), 889-910.
Ralph, F. M., P. J. Neiman, and G. A. Wick (2004), Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98, Monthly Weather Review, 132(7), 1721-1745.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld (2001), Aerosols, climate, and the hydrological cycle., Science, 294, 2119-2124 doi:10.1126/science.1064034.
Randerson, J. T., H. Liu, M. G. Flanner, S. D. Chambers, Y. Jin, P. G. Hess, G. Pfister, M. Mack, K. Treseder, and L. Welp (2006), The impact of boreal forest fire on climate warming, science, 314(5802), 1130-1132.
Randles, C., A. Da Silva, V. Buchard, P. Colarco, A. Darmenov, R. Govindaraju, A. Smirnov, B. Holben, R. Ferrare, and J. Hair (2017), The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation, Journal of climate, 30(17), 6823-6850.
Randles, C. A., et al. (2013), Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment, Atmos. Chem. Phys., 13(5), 2347-2379, doi:10.5194/acp-13-2347-2013.
Rasmusson, E. M., and T. H. Carpenter (1982), Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño, Monthly Weather Review, 110(5), 354-384.
Reddy, M. S., O. Boucher, Y. Balkanski, and M. Schulz (2005), Aerosol optical depths and direct radiative perturbations by species and source type, Geophysical research letters, 32(12).
Reid, J. S., et al. (2013), Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmospheric Research, 122, 403-468, doi:http://dx.doi.org/10.1016/j.atmosres.2012.06.005.
Rienecker, M. M., et al. (2011), MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications, Journal of Climate, 24(14), 3624-3648, doi:10.1175/JCLI-D-11-00015.1.
Saha, S., S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, and D. Behringer (2010), The NCEP climate forecast system reanalysis, Bulletin of the American Meteorological Society, 91(8), 1015-1058.
Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata (1999), A dipole mode in the tropical Indian Ocean, Nature, 401(6751), 360-363.
Saji, N., and T. Yamagata (2003), Possible impacts of Indian Ocean dipole mode events on global climate, Climate Research, 25(2), 151-169.
Schwartz, J., and L. M. Neas (2000), Fine Particles Are More Strongly Associated Than Coarse Particles with Acute Respiratory Health Effects in Schoolchildren, Epidemiology, 11(1), 6-10, doi:10.2307/3703646.
Seinfeld, J. H., G. R. Carmichael, R. Arimoto, W. C. Conant, F. J. Brechtel, T. S. Bates, T. A. Cahill, A. D. Clarke, S. J. Doherty, and P. J. Flatau (2004), ACE-ASIA: regional climatic and atmospheric chemical effects of Asian dust and pollution, Bulletin of the American Meteorological Society, 85(3), 367-380.
Sherman, J., P. Sheridan, J. Ogren, E. Andrews, D. Hageman, L. Schmeisser, A. Jefferson, and S. Sharma (2015), A multi-year study of lower tropospheric aerosol variability and systematic relationships from four North American regions, Atmospheric Chemistry and Physics, 15(21), 12487-12517.
Siegel, D. A., J. C. Ohlmann, L. Washburn, R. R. Bidigare, C. T. Nosse, E. Fields, and Y. Zhou (1995), Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool, Journal of Geophysical Research: Oceans, 100(C3), 4885-4891, doi:10.1029/94jc03128.
Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27(12), 2502-2509.
Stanhill, G., O. Achiman, R. Rosa, and S. Cohen (2014), The cause of solar dimming and brightening at the Earth′s surface during the last half century: Evidence from measurements of sunshine duration, Journal of Geophysical Research: Atmospheres, 119(18), 10,902-910,911.
Stier, P., et al. (2013), Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study, Atmos. Chem. Phys., 13(6), 3245-3270, doi:10.5194/acp-13-3245-2013.
Streets, D. G., T. C. Bond, T. Lee, and C. Jang (2004), On the future of carbonaceous aerosol emissions, Journal of Geophysical Research: Atmospheres, 109(D24), D24212, doi:10.1029/2004JD004902.
Tsay, S.-C., N. C. Hsu, W. K.-M. Lau, C. Li, P. M. Gabriel, Q. Ji, B. N. Holben, E. J. Welton, A. X. Nguyen, and S. Janjai (2013), From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia, Atmospheric environment, 78, 20-34.
Tsay, S.-C., et al. (2016), Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS/BASELInE, Aerosol and Air Quality Research, 16(11), 2581-2602, doi:10.4209/aaqr.2016.08.0350.
Twomey, S. (1974), Pollution and the planetary albedo, Atmospheric Environment (1967), 8(12), 1251-1256, doi:http://dx.doi.org/10.1016/0004-6981(74)90004-3.
van der Werf, G. R., J. T. Randerson, L. Giglio, G. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. DeFries, Y. v. Jin, and T. T. van Leeuwen (2010), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmospheric Chemistry and Physics, 10(23), 11707-11735.
van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr (2006), Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6(11), 3423-3441, doi:10.5194/acp-6-3423-2006.
Vetter, T., and F. Wechsung (2015), Direct aerosol effects during periods of solar dimming and brightening hidden in the regression residuals: Evidence from Potsdam measurements, Journal of Geophysical Research: Atmospheres, 120(21), 11,299-211,305.
Wang, J., V. F. McNeill, D. R. Collins, and R. C. Flagan (2002), Fast mixing condensation nucleus counter: application to rapid scanning differential mobility analyzer measurements, Aerosol Science and Technology, 36(6), 678-689.
Wang, J., Y. Yue, Y. Wang, C. Ichoku, L. Ellison, and J. Zeng (2018), Mitigating Satellite‐Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF‐Chem Model Over the Northern sub‐Saharan African Region, Journal of Geophysical Research: Atmospheres, 123(1), 507-528.
Wang, S.-H., N.-H. Lin, M.-D. Chou, and J.-H. Woo (2007), Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P, J. Geophys. Res., 112(D10), D10222, doi:10.1029/2006jd007564.
Wang, S.-H., E. J. Welton, B. N. Holben, S.-C. Tsay, N.-H. Lin, D. Giles, S. A. Stewart, S. Janjai, X. A. Nguyen, and T.-C. Hsiao (2015), Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during 2014 7-SEAS Campaign, Aerosol and Air Quality Research, 15(5), 2037-2050.
Wendisch, M., O. Hellmuth, A. Ansmann, J. Heintzenberg, R. Engelmann, D. Althausen, H. Eichler, D. Müller, M. Hu, and Y. Zhang (2008), Radiative and dynamic effects of absorbing aerosol particles over the Pearl River Delta, China, Atmospheric Environment, 42(25), 6405-6416.
Wild, M. (2009), Global dimming and brightening: A review, J. Geophys. Res., 114, D00D16, doi:10.1029/2008jd011470.
Wiscombe, W. J. (1980), Improved Mie scattering algorithms, Applied optics, 19(9), 1505-1509.
Wu, J., W. Jiang, C. Fu, B. Su, H. Liu, and J. Tang (2004), Simulation of the radiative effect of black carbon aerosols and the regional climate responses over China, Advances in Atmospheric Sciences, 21(4), 637-649.
Yen, M.-C., C.-M. Peng, T.-C. Chen, C.-S. Chen, N.-H. Lin, R.-Y. Tzeng, Y.-A. Lee, and C.-C. Lin (2013), Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 35-50.
Zhang, F., J. Wang, C. Ichoku, E. J. Hyer, Z. Yang, C. Ge, S. Su, X. Zhang, S. Kondragunta, and J. W. Kaiser (2014), Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region, Environmental Research Letters, 9(7), 075002.
王聖翔 (2007), 亞州生質燃燒氣膠對對區域區域環境環境與大氣輻射大氣輻射衝擊及對氣象場的反饋作用, 國立中央大學大氣物理研究博士論文.
林定賢 (2014), 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究, 國立中央大學大氣物理研究碩士論文.
指導教授 王聖翔(Sheng-Hsiang Wang) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明