參考文獻 |
Ackerman, A. S., O. Toon, D. Stevens, A. Heymsfield, V. Ramanathan, and E. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288(5468), 1042-1047.
Albrecht, B. A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science, 245(4923), 1227-1230.
Anderson, T., D. Covert, S. Marshall, M. Laucks, R. Charlson, A. Waggoner, J. Ogren, R. Caldow, R. Holm, and F. Quant (1996), Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, Journal of Atmospheric and Oceanic Technology, 13(5), 967-986.
Andreae, M., and A. Gelencsér (2006), Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols.
Ångström, A. (1964), The parameters of atmospheric turbidity, Tellus, 16(1), 64-75, doi:10.1111/j.2153-3490.1964.tb00144.x.
Babu, S. S., J. P. Chaubey, K. Krishna Moorthy, M. M. Gogoi, S. K. Kompalli, V. Sreekanth, S. Bagare, B. C. Bhatt, V. K. Gaur, and T. P. Prabhu (2011), High altitude (∼ 4520 m amsl) measurements of black carbon aerosols over western trans‐Himalayas: Seasonal heterogeneity and source apportionment, Journal of Geophysical Research: Atmospheres, 116(D24).
Ballhorn, U., F. Siegert, M. Mason, and S. Limin (2009), Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands, Proceedings of the National Academy of Sciences, 106(50), 21213-21218.
Bian, H., M. Chin, D. A. Hauglustaine, M. Schulz, G. Myhre, S. E. Bauer, M. T. Lund, V. A. Karydis, T. L. Kucsera, and X. Pan (2017), Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmospheric Chemistry and Physics, 17(21), 12911.
Bond, T. C., and R. W. Bergstrom (2006), Light absorption by carbonaceous particles: An investigative review, Aerosol science and technology, 40(1), 27-67.
Bond, T. C., S. J. Doherty, D. Fahey, P. Forster, T. Berntsen, B. DeAngelo, M. Flanner, S. Ghan, B. Kärcher, and D. Koch (2013), Bounding the role of black carbon in the climate system: A scientific assessment, Journal of Geophysical Research: Atmospheres, 118(11), 5380-5552.
Bosilovich, M. G., et al. (2015), MERRA-2: Initial Evaluation of the Climate, Technical Report Series on Global Modeling and Data Assimilation, 43.
Buchard, V., A. M. da Silva, C. A. Randles, P. Colarco, R. Ferrare, J. Hair, C. Hostetler, J. Tackett, and D. Winker (2016), Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States, Atmospheric Environment, 125, Part A, 100-111, doi:http://dx.doi.org/10.1016/j.atmosenv.2015.11.004.
Buchard, V., A. M. da Silva, P. R. Colarco, A. Darmenov, C. A. Randles, R. Govindaraju, O. Torres, J. Campbell, and R. Spurr (2014), Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmospheric Chemistry and Physics, 14(23), 32177-32231, doi:10.5194/acpd-14-32177-2014.
Buchard, V., C. Randles, A. Da Silva, A. Darmenov, P. Colarco, R. Govindaraju, R. Ferrare, J. Hair, A. Beyersdorf, and L. Ziemba (2017), The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies, Journal of Climate, 30(17), 6851-6872.
Carslaw, K., O. Boucher, D. Spracklen, G. Mann, J. Rae, S. Woodward, and M. Kulmala (2010), A review of natural aerosol interactions and feedbacks within the Earth system, Atmospheric Chemistry & Physics, 10(4).
Che, H., K. Gui, X. Xia, Y. Wang, B. N. Holben, P. Goloub, E. Cuevas Agulló, H. Wang, Y. Zheng, and H. Zhao (2019), Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth.
Chen, G. T.-J., C.-C. Wang, and D. T.-W. Lin (2005), Characteristics of low-level jets over northern Taiwan in Mei-Yu season and their relationship to heavy rain events, Monthly weather review, 133(1), 20-43.
Chen, G. T.-J., and C.-C. Yu (1988), Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season, Monthly weather review, 116, 884-891.
Chen, Y., A. Hall, and K. N. Liou (2006), Application of three-dimensional solar radiative transfer to mountains, Journal of Geophysical Research: Atmospheres, 111(D21), D21111, doi:10.1029/2006jd007163.
Chin, M., P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima (2002), Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements, Journal of the Atmospheric Sciences, 59(3), 461-483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.
Chou, M.-D., and M. J. Suarez (1999), A Solar Radiation Parameterization for Atmospheric Studies, NASA Technical Memorandum, Volume 15.
Chuang, M.-T., J. S. Fu, C.-T. Lee, N.-H. Lin, Y. Gao, S.-H. Wang, G.-R. Sheu, T.-C. Hsiao, J.-L. Wang, and M.-C. Yen (2015a), The simulation of long-range transport of biomass burning plume and short-range transport of anthropogenic pollutants to a mountain observatory in East Asia during the 7-SEAS/2010 Dongsha Experiment, Aerosol Air Qual. Res., doi, 10.
Chuang, M.-T., J. S. Fu, N.-H. Lin, C.-T. Lee, Y. Gao, S.-H. Wang, G.-R. Sheu, T.-C. Hsiao, J.-L. Wang, and M.-C. Yen (2015b), Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment, Atmospheric Environment, 112, 294-305.
Chuang, M.-T., et al. (2014), Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin, Atmospheric Environment, 89, 507-516, doi:10.1016/j.atmosenv.2013.11.066.
Cohn, S. E., A. Da Silva, J. Guo, M. Sienkiewicz, and D. Lamich (1998), Assessing the effects of data selection with the DAO physical-space statistical analysis system, Monthly Weather Review, 126(11), 2913-2926.
Colarco, P., A. da Silva, M. Chin, and T. Diehl (2010), Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth, Journal of Geophysical Research: Atmospheres, 115(D14), D14207, doi:10.1029/2009JD012820.
D′Errico, M., C. Cagnazzo, P. G. Fogli, W. K. Lau, J. von Hardenberg, F. Fierli, and A. Cherchi (2015), Indian monsoon and the elevated‐heat‐pump mechanism in a coupled aerosol‐climate model, Journal of Geophysical Research: Atmospheres, 120(17), 8712-8723.
Darmenov, A., and A. da Silva (2013), The quick fire emissions dataset (QFED)–documentation of versions 2.1, 2.2 and 2.4, NASA Technical Report Series on Global Modeling and Data Assimilation, NASA TM-2013-104606, 32, 183.
Dee, D. P., and A. M. da Silva (1999), Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology, Monthly Weather Review, 127(8), 1822-1834.
Dee, D. P., S. M. Uppala, A. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. Balmaseda, G. Balsamo, and d. P. Bauer (2011), The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly Journal of the royal meteorological society, 137(656), 553-597.
Derimian, Y., O. Dubovik, X. Huang, T. Lapyonok, P. Litvinov, A. B. Kostinski, P. Dubuisson, and F. Ducos (2016), Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics, Atmos. Chem. Phys., 16(9), 5763-5780, doi:10.5194/acp-16-5763-2016.
Diehl, T., A. Heil, M. Chin, X. Pan, D. Streets, M. Schultz, and S. Kinne (2012), Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO 2 from 1980 to 2010 for hindcast model experiments, Atmospheric Chemistry and Physics Discussions, 12(9), 24895-24954.
Dubovik, O., et al. (2006), Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, Journal of Geophysical Research: Atmospheres, 111(D11), D11208, doi:10.1029/2005jd006619.
Duncan, B. N., R. V. Martin, A. C. Staudt, R. Yevich, and J. A. Logan (2003), Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, Journal of Geophysical Research: Atmospheres, 108(D2), ACH 1-1-ACH 1-22.
Eck, T., B. Holben, J. Reid, O. Dubovik, A. Smirnov, N. O′neill, I. Slutsker, and S. Kinne (1999), Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, Journal of Geophysical Research: Atmospheres, 104(D24), 31333-31349.
Eck, T. F., et al. (2005), Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, Journal of Geophysical Research: Atmospheres, 110(D6), D06202, doi:10.1029/2004jd005274.
Ervens, B., B. Turpin, and R. Weber (2011), Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmospheric Chemistry & Physics Discussions, 11(8).
Fu, J. S., N. C. Hsu, Y. Gao, K. Huang, C. Li, N. H. Lin, and S. C. Tsay (2012), Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling, Atmos. Chem. Phys., 12(9), 3837-3855, doi:10.5194/acp-12-3837-2012.
Gelaro, R., W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, and R. Reichle (2017), The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), Journal of Climate, 30(14), 5419-5454.
Gerber, H. (1985), Relative-humidity parameterization of the Navy aerosol model (NAM), NRL Rep. 8956, Natl. Res. Lab., Washington, DC.
Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin (2001), Sources and distributions of dust aerosols simulated with the GOCART model, Journal of Geophysical Research: Atmospheres, 106(D17), 20255-20273, doi:10.1029/2000JD000053.
Gong, S. (2003), A parameterization of sea‐salt aerosol source function for sub‐and super‐micron particles, Global biogeochemical cycles, 17(4).
Haywood, J., and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Reviews of Geophysics, 38(4), 513-543, doi:10.1029/1999rg000078.
Henriksson, S., J.-P. Pietikainen, A.-P. Hyvarinen, P. Raisanen, K. Kupiainen, J. Tonttila, R. Hooda, H. Lihavainen, D. O′Donnell, and L. Backman (2014), Spatial distributions and seasonal cycles of aerosol climate effects in India seen in a global climate-aerosol model, Atmospheric Chemistry and Physics, 14(18), 10177-10192.
Herckes, P., K. T. Valsaraj, and J. L. Collett Jr (2013), A review of observations of organic matter in fogs and clouds: Origin, processing and fate, Atmospheric research, 132, 434-449.
Hess, M., P. Koepke, and I. Schult (1998), Optical Properties of Aerosols and Clouds: The Software Package OPAC, Bulletin of the American Meteorological Society, 79(5), 831-844, doi:10.1175/1520-0477(1998)079<0831:opoaac>2.0.co;2.
Holben, B. N., T. F. Eck, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, and O. Dubovik (2006), AERONET′s version 2.0 quality assurance criteria, paper presented at Asia-Pacific Remote Sensing Symposium, International Society for Optics and Photonics.
Holben, B. N., et al. (1998), AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sensing of Environment, 66(1), 1-16, doi:http://dx.doi.org/10.1016/S0034-4257(98)00031-5.
Hsu, N., R. Gautam, A. Sayer, C. Bettenhausen, C. Li, M. Jeong, S. Tsay, and B. Holben (2012), Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010.
Huang, H. Y., S. H. Wang, W. X. Huang, N. H. Lin, M. T. Chuang, A. M. da Silva, and C. M. Peng (2020), Influence of Synoptic‐Dynamic Meteorology on the Long‐Range Transport of Indochina Biomass Burning Aerosols, Journal of Geophysical Research: Atmospheres, 125(3), e2019JD031260.
Huang, K., J. S. Fu, N. C. Hsu, Y. Gao, X. Dong, S.-C. Tsay, and Y. F. Lam (2013), Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA, Atmospheric Environment, 78, 291-302, doi:http://dx.doi.org/10.1016/j.atmosenv.2012.03.048.
Huang, W. R., S. H. Wang, M. C. Yen, N. H. Lin, and P. Promchote (2016), Interannual variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts, Journal of Geophysical Research: Atmospheres, 121(17).
Hyslop, N. P. (2009), Impaired visibility: the air pollution people see, Atmospheric Environment, 43(1), 182-195, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.09.067.
IPCC (2007), Climate Change 2007, The Physical Science Basis, Summary for Policymakers, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. Alley et al.
IPCC (2013), Working Group I Contribution to the IPCC Fifth Assessment Report: Climate Change 2013: The Physical Science Basis, Summary for Policymakers, IPCC, UN.
Jacob, D. J., J. H. Crawford, M. M. Kleb, V. S. Connors, R. J. Bendura, J. L. Raper, G. W. Sachse, J. C. Gille, L. Emmons, and C. L. Heald (2003), Transport and Chemical Evolution over the Pacific (TRACE‐P) aircraft mission: Design, execution, and first results, Journal of Geophysical Research: Atmospheres (1984–2012), 108(D20).
Jacobson, M. Z. (2000), A physically‐based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, Geophysical Research Letters, 27(2), 217-220.
Jin, Q., and S. Pryor (2020), Long‐Term Trends of High Aerosol Pollution Events and Their Climatic Impacts in North America Using Multiple Satellite Retrievals and Modern‐Era Retrospective Analysis for Research and Applications version 2, Journal of Geophysical Research: Atmospheres, 125(4), e2019JD031137.
Jin, Q., J. Wei, Z.-L. Yang, B. Pu, and J. Huang (2015), Consistent response of Indian summer monsoon to Middle East dust in observations and simulations.
Kanakidou, M., J. Seinfeld, S. Pandis, I. Barnes, F. Dentener, M. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, and C. Nielsen (2005), Organic aerosol and global climate modelling: a review.
Kim, M.-K., W. K. M. Lau, M. Chin, K.-M. Kim, Y. C. Sud, and G. K. Walker (2006), Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring, Journal of Climate, 19(18), 4700-4718, doi:10.1175/JCLI3871.1.
Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, and H. Endo (2015), The JRA-55 reanalysis: General specifications and basic characteristics, Journal of the Meteorological Society of Japan. Ser. II, 93(1), 5-48.
Koepke, P., J. Gasteiger, and M. Hess (2015), Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC, Atmospheric Chemistry and Physics, 15(10), 5947-5956.
Lai, Y.-J., M.-D. Chou, and P.-H. Lin (2010), Parameterization of topographic effect on surface solar radiation, Journal of Geophysical Research: Atmospheres, 115(D1), D01104, doi:10.1029/2009JD012305.
Laskin, A., J. Laskin, and S. A. Nizkorodov (2015), Chemistry of atmospheric brown carbon, Chemical reviews, 115(10), 4335-4382.
Lau, K. M., and K. M. Kim (2006), Observational relationships between aerosol and Asian monsoon rainfall, and circulation, Geophysical Research Letters, 33(21).
Lau, K. M., M. K. Kim, and K. M. Kim (2006), Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau, Clim Dyn, 26(7-8), 855-864, doi:10.1007/s00382-006-0114-z.
Lau, W. K. (2016), The aerosol-monsoon climate system of Asia: A new paradigm, Journal of Meteorological Research, 30(1), 1-11.
Lee, C.-T., et al. (2011a), The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan, Atmospheric Environment, 45(32), 5784-5794, doi:10.1016/j.atmosenv.2011.07.020.
Lee, D., Y. C. Sud, L. Oreopoulos, K. M. Kim, W. K. Lau, and I. S. Kang (2014), Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia, Atmos. Chem. Phys., 14(13), 6853-6866, doi:10.5194/acp-14-6853-2014.
Lee, W.-L., and K. N. Liou (2007), A Coupled Atmosphere–Ocean Radiative Transfer System Using the Analytic Four-Stream Approximation, Journal of the Atmospheric Sciences, 64(10), 3681-3694, doi:10.1175/jas4004.1.
Lee, W.-L., K. N. Liou, and A. Hall (2011b), Parameterization of solar fluxes over mountain surfaces for application to climate models, Journal of Geophysical Research: Atmospheres, 116(D1), D01101, doi:10.1029/2010jd014722.
Li, J., B. Carlson, O. Dubovik, and A. Lacis (2014), Recent trends in aerosol optical properties derived from AERONET measurements, Atmos. Chem. Phys, 14(22), 12271-12289.
Lin, C.-Y., H.-M. Hsu, Y. Lee, C.-H. Kuo, Y.-F. Sheng, and D. Chu (2009), A new transport mechanism of biomass burning from Indochina as identified by modeling studies, Atmospheric Chemistry & Physics, 9(20).
Lin, N.-H., A. M. Sayer, S.-H. Wang, A. M. Loftus, T.-C. Hsiao, G.-R. Sheu, N. C. Hsu, S.-C. Tsay, and S. Chantara (2014), Interactions between biomass-burning aerosols and clouds over Southeast Asia: Current status, challenges, and perspectives, Environmental Pollution, 195, 292-307.
Lin, N.-H., et al. (2013), An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS, Atmospheric Environment, 78(0), 1-19, doi:http://dx.doi.org/10.1016/j.atmosenv.2013.04.066.
Liou, K. N., W.-L. Lee, and A. Hall (2007), Radiative transfer in mountains: Application to the Tibetan Plateau, Geophysical Research Letters, 342(23), doi:10.1029/2007gl031762.
Müller, T., J. Henzing, G. d. Leeuw, A. Wiedensohler, A. Alastuey, H. Angelov, M. Bizjak, M. Collaud Coen, J. Engström, and C. Gruening (2011), Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops.
Mayer, B., and A. Kylling (2005), Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5(7), 1855-1877, doi:10.5194/acp-5-1855-2005.
Meng, Z., P. Yang, G. W. Kattawar, L. Bi, K. Liou, and I. Laszlo (2010), Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations, Journal of Aerosol Science, 41(5), 501-512.
Mobley, C. D. (1994), Light and Water: Radiative Transfer in Natural Waters. Academic, 592 pp., San Diego.
Mortier, A., et al. (2020), Evaluation of climate model aerosol trends with ground-based observations over the last two decades - an AeroCom and CMIP6 analysis, Atmos. Chem. Phys. Discuss., 2020, 1-36, doi:10.5194/acp-2019-1203.
Müller, T., J. Henzing, G. d. Leeuw, A. Wiedensohler, A. Alastuey, H. Angelov, M. Bizjak, M. Collaud Coen, J. Engström, and C. Gruening (2011), Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops.
Myhre, G., et al. (2013), Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13(4), 1853-1877, doi:10.5194/acp-13-1853-2013.
O′Neill, N. T., A. Ignatov, B. Holben, and T. Eck (2000), The lognormal distribution as a reference for reporting aerosol optical depth statistics; Empirical tests using multi‐year, multi‐site AERONET Sunphotometer data, Geophysical Research Letters, 27(20), 3333-3336.
Ogren, J. A., J. Wendell, E. Andrews, and P. J. Sheridan (2017), Continuous light absorption photometer for long-term studies, Atmospheric Measurement Techniques, 10(12), 4805.
Oltmans, S., B. Johnson, J. Harris, A. M. Thompson, H. Liu, C. Chan, H. Vömel, T. Fujimoto, V. Brackett, and W. Chang (2004), Tropospheric ozone over the North Pacific from ozonesonde observations, Journal of Geophysical Research: Atmospheres, 109(D15).
Page, S. E., F. Siegert, J. O. Rieley, H.-D. V. Boehm, A. Jaya, and S. Limin (2002), The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, 420(6911), 61-65.
Pawson, S., I. Stajner, S. R. Kawa, H. Hayashi, W. W. Tan, J. E. Nielsen, Z. Zhu, L. P. Chang, and N. J. Livesey (2007), Stratospheric transport using 6‐h‐averaged winds from a data assimilation system, Journal of Geophysical Research: Atmospheres (1984–2012), 112(D23).
Pincus, R., and M. B. Baker (1994), Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature, 372(6503), 250-252.
Provençal, S., V. Buchard, A. M. da Silva, R. Leduc, N. Barrette, E. Elhacham, and S.-H. Wang (2017), Evaluation of PM2. 5 Surface Concentration Simulated by Version 1 of the Nasa′s MERRA Aerosol Reanalysis Over Israel and Taiwan, Aerosol and Air Quality Research.
Ralph, F. M., P. J. Neiman, and R. Rotunno (2005), Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics, Monthly weather review, 133(4), 889-910.
Ralph, F. M., P. J. Neiman, and G. A. Wick (2004), Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98, Monthly Weather Review, 132(7), 1721-1745.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld (2001), Aerosols, climate, and the hydrological cycle., Science, 294, 2119-2124 doi:10.1126/science.1064034.
Randerson, J. T., H. Liu, M. G. Flanner, S. D. Chambers, Y. Jin, P. G. Hess, G. Pfister, M. Mack, K. Treseder, and L. Welp (2006), The impact of boreal forest fire on climate warming, science, 314(5802), 1130-1132.
Randles, C., A. Da Silva, V. Buchard, P. Colarco, A. Darmenov, R. Govindaraju, A. Smirnov, B. Holben, R. Ferrare, and J. Hair (2017), The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation, Journal of climate, 30(17), 6823-6850.
Randles, C. A., et al. (2013), Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment, Atmos. Chem. Phys., 13(5), 2347-2379, doi:10.5194/acp-13-2347-2013.
Rasmusson, E. M., and T. H. Carpenter (1982), Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño, Monthly Weather Review, 110(5), 354-384.
Reddy, M. S., O. Boucher, Y. Balkanski, and M. Schulz (2005), Aerosol optical depths and direct radiative perturbations by species and source type, Geophysical research letters, 32(12).
Reid, J. S., et al. (2013), Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmospheric Research, 122, 403-468, doi:http://dx.doi.org/10.1016/j.atmosres.2012.06.005.
Rienecker, M. M., et al. (2011), MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications, Journal of Climate, 24(14), 3624-3648, doi:10.1175/JCLI-D-11-00015.1.
Saha, S., S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, and D. Behringer (2010), The NCEP climate forecast system reanalysis, Bulletin of the American Meteorological Society, 91(8), 1015-1058.
Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata (1999), A dipole mode in the tropical Indian Ocean, Nature, 401(6751), 360-363.
Saji, N., and T. Yamagata (2003), Possible impacts of Indian Ocean dipole mode events on global climate, Climate Research, 25(2), 151-169.
Schwartz, J., and L. M. Neas (2000), Fine Particles Are More Strongly Associated Than Coarse Particles with Acute Respiratory Health Effects in Schoolchildren, Epidemiology, 11(1), 6-10, doi:10.2307/3703646.
Seinfeld, J. H., G. R. Carmichael, R. Arimoto, W. C. Conant, F. J. Brechtel, T. S. Bates, T. A. Cahill, A. D. Clarke, S. J. Doherty, and P. J. Flatau (2004), ACE-ASIA: regional climatic and atmospheric chemical effects of Asian dust and pollution, Bulletin of the American Meteorological Society, 85(3), 367-380.
Sherman, J., P. Sheridan, J. Ogren, E. Andrews, D. Hageman, L. Schmeisser, A. Jefferson, and S. Sharma (2015), A multi-year study of lower tropospheric aerosol variability and systematic relationships from four North American regions, Atmospheric Chemistry and Physics, 15(21), 12487-12517.
Siegel, D. A., J. C. Ohlmann, L. Washburn, R. R. Bidigare, C. T. Nosse, E. Fields, and Y. Zhou (1995), Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool, Journal of Geophysical Research: Oceans, 100(C3), 4885-4891, doi:10.1029/94jc03128.
Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27(12), 2502-2509.
Stanhill, G., O. Achiman, R. Rosa, and S. Cohen (2014), The cause of solar dimming and brightening at the Earth′s surface during the last half century: Evidence from measurements of sunshine duration, Journal of Geophysical Research: Atmospheres, 119(18), 10,902-910,911.
Stier, P., et al. (2013), Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study, Atmos. Chem. Phys., 13(6), 3245-3270, doi:10.5194/acp-13-3245-2013.
Streets, D. G., T. C. Bond, T. Lee, and C. Jang (2004), On the future of carbonaceous aerosol emissions, Journal of Geophysical Research: Atmospheres, 109(D24), D24212, doi:10.1029/2004JD004902.
Tsay, S.-C., N. C. Hsu, W. K.-M. Lau, C. Li, P. M. Gabriel, Q. Ji, B. N. Holben, E. J. Welton, A. X. Nguyen, and S. Janjai (2013), From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia, Atmospheric environment, 78, 20-34.
Tsay, S.-C., et al. (2016), Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS/BASELInE, Aerosol and Air Quality Research, 16(11), 2581-2602, doi:10.4209/aaqr.2016.08.0350.
Twomey, S. (1974), Pollution and the planetary albedo, Atmospheric Environment (1967), 8(12), 1251-1256, doi:http://dx.doi.org/10.1016/0004-6981(74)90004-3.
van der Werf, G. R., J. T. Randerson, L. Giglio, G. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. DeFries, Y. v. Jin, and T. T. van Leeuwen (2010), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmospheric Chemistry and Physics, 10(23), 11707-11735.
van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr (2006), Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6(11), 3423-3441, doi:10.5194/acp-6-3423-2006.
Vetter, T., and F. Wechsung (2015), Direct aerosol effects during periods of solar dimming and brightening hidden in the regression residuals: Evidence from Potsdam measurements, Journal of Geophysical Research: Atmospheres, 120(21), 11,299-211,305.
Wang, J., V. F. McNeill, D. R. Collins, and R. C. Flagan (2002), Fast mixing condensation nucleus counter: application to rapid scanning differential mobility analyzer measurements, Aerosol Science and Technology, 36(6), 678-689.
Wang, J., Y. Yue, Y. Wang, C. Ichoku, L. Ellison, and J. Zeng (2018), Mitigating Satellite‐Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF‐Chem Model Over the Northern sub‐Saharan African Region, Journal of Geophysical Research: Atmospheres, 123(1), 507-528.
Wang, S.-H., N.-H. Lin, M.-D. Chou, and J.-H. Woo (2007), Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P, J. Geophys. Res., 112(D10), D10222, doi:10.1029/2006jd007564.
Wang, S.-H., E. J. Welton, B. N. Holben, S.-C. Tsay, N.-H. Lin, D. Giles, S. A. Stewart, S. Janjai, X. A. Nguyen, and T.-C. Hsiao (2015), Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during 2014 7-SEAS Campaign, Aerosol and Air Quality Research, 15(5), 2037-2050.
Wendisch, M., O. Hellmuth, A. Ansmann, J. Heintzenberg, R. Engelmann, D. Althausen, H. Eichler, D. Müller, M. Hu, and Y. Zhang (2008), Radiative and dynamic effects of absorbing aerosol particles over the Pearl River Delta, China, Atmospheric Environment, 42(25), 6405-6416.
Wild, M. (2009), Global dimming and brightening: A review, J. Geophys. Res., 114, D00D16, doi:10.1029/2008jd011470.
Wiscombe, W. J. (1980), Improved Mie scattering algorithms, Applied optics, 19(9), 1505-1509.
Wu, J., W. Jiang, C. Fu, B. Su, H. Liu, and J. Tang (2004), Simulation of the radiative effect of black carbon aerosols and the regional climate responses over China, Advances in Atmospheric Sciences, 21(4), 637-649.
Yen, M.-C., C.-M. Peng, T.-C. Chen, C.-S. Chen, N.-H. Lin, R.-Y. Tzeng, Y.-A. Lee, and C.-C. Lin (2013), Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 35-50.
Zhang, F., J. Wang, C. Ichoku, E. J. Hyer, Z. Yang, C. Ge, S. Su, X. Zhang, S. Kondragunta, and J. W. Kaiser (2014), Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region, Environmental Research Letters, 9(7), 075002.
王聖翔 (2007), 亞州生質燃燒氣膠對對區域區域環境環境與大氣輻射大氣輻射衝擊及對氣象場的反饋作用, 國立中央大學大氣物理研究博士論文.
林定賢 (2014), 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究, 國立中央大學大氣物理研究碩士論文. |