博碩士論文 107426026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.220.154.41
姓名 胡羽喬(Yu-Ciao Hu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 考量最大利潤之再生能源發電業最佳能源分配
(Maximizing Profit Distribution of Renewable Energy)
相關論文
★ 以模擬退火演算法 進行化鍍製程無關聯平行機台之排程★ 以混合整數規劃 安插電鍍銅平行機台之緊急訂單
★ 以混合整數規劃進行非相關平行機台之批次製造排程★ 工業用電考量時間電價之太陽能發電系統最佳配置規劃
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 因人類活動仰賴化石能源而排放大量溫室氣體,造成全球暖化逐年加劇,地球升溫造成氣候變遷,嚴重影響生態環境,同時也導致化石能源逐漸枯竭。在全球碳排放量統計中,能源產生的碳排放量為比例之中最高的,因此,若要減緩全球二氧化碳的排放量,首要任務為降低能源的碳排放量。因此再生能源成為了很好的替代能源,再生能源利用自然環境資源發電,資源會自然產生並循環不息,為用之不盡的能源,生產能源的過程也不會產生二氧化碳,因此受到各國的重視。
隨著全球環保意識的提高,國際企業紛紛設立再生能源目標,同時也要求其供應商使用再生能源。由於國際企業提倡購買在地綠電,以達到最低的電力運輸耗損,且隨著綠電需求的不斷提高,促使各國政府更加積極發展再生能源產業,以滿足企業對綠電的需求,同時也制定再生能源相關政策。我國政府修訂《再生能源發展條例》,要求用電大戶必須使用至少10%的再生能源。近年更修訂《電業法》,推廣電業自由化,以綠能先行原則,新增再生能源發電業及售電業,開放再生能源自由買賣、直供與轉供,讓購電用戶擁有較多的選擇權,希望透過市場競爭機制,提升產業效率、服務品質及降低成本,促進綠能產業發展。
考量綠電需求逐漸增加,如何在目前有限的綠電資源內,有效的分配資源成為至關重要的問題。本研究以台灣再生能源發電業者的角度,以一年的數據進行研究,並以最大利潤為目標,建立數學規劃模型進行求解。結果顯示,考慮太陽日射量、500位客戶的電力需求、每位客戶不同的購電單價及違約賠償金等多項參考因素下,以台中為探討地區,最佳的太陽能板設置面積為151,395平方公尺,最大利潤為5,704,549元,除此之外,也針對不同地區的日射量差異及不同的太陽光電發電成本進行敏感度分析。本研究可使再生能源發電業者在各個地區面對不同的客戶電力需求時,提供最佳的太陽能板設置量及資源分配的參考。
摘要(英) Because human activities depend on fossil fuels and emit large amounts of greenhouse gases, global warming has worsened. Global warming has caused climate change, which has seriously affected the ecological environment, and it has also caused the depletion of fossil energy. In the global carbon emissions statistics, the carbon emissions generated by energy are the highest proportion. Therefore, to reduce the global carbon emissions, it is most important to reduce the carbon emissions generated by energy. Renewable energy has become a good option for alternative energy. Renewable energy uses the natural resources of the environment to generate electricity. The process of producing energy will not emit carbon dioxide, so it has received international attention.
As global environmental awareness has increased, international companies have set targets for using renewable energy, and also require their suppliers to use renewable energy. In order to reduce the loss of electricity in transportation, international companies promote the purchase of green electricity locally. As the demand for green power gradually increases, the government is encouraged to more actively develop the renewable energy industry to meet the demand for green power by enterprises, and also formulate policies related to renewable energy. The Taiwanese government revises the "Renewable Energy Development Bill" to require large power users to use at least 10% of renewable energy. In recent years, the "Electricity Act" has been revised to promote the liberalization of the electricity industry, opening up the Renewable-Energy-Based Electric Power Producer and Renewable-Energy-Based Electricity Retailing Enterprise. Open renewable energy trading, direct supply and re-supply, so that all power users have the right to choose, hope to improve the efficiency of power supply services and promote the development of green energy industry through market competition.
Considering the increasing demand for green power, how to effectively allocate resources within the limited green power resources has become a crucial issue. This paper will take Taiwan Renewable-Energy-Based Electric Power Producer as an example to establish a mathematical programming model to solve the problem. The results show that the optimal amount of solar panels installed and the optimal distribution of power resources. Taking Taichung as the discussion area, the best solar panel installation area is 151,395 square meters, and the maximum profit is 5,704,549 NTD. This study also conducted a sensitivity analysis of the difference in solar radiation in different regions and different solar photovoltaic power generation costs. This study can provide a reference for the optimal amount of solar panels installed and resource allocation when Renewable-Energy-Based Electric Power Producer face different power needs in different regions.
關鍵字(中) ★ 永續發展
★ 再生能源
★ 電業自由化
★ 資源分配
關鍵字(英) ★ Sustainable Development
★ Renewable Energy
★ Electricity Liberalization
★ Resource Allocation
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 論文架構 3
第二章 研究問題 5
2.1 再生能源產業 5
2.2 綠色電力 7
2.3 研究問題 11
第三章 文獻探討 13
3.1 永續發展(Sustainable Development) 13
3.2 再生能源(Renewable Energy) 16
3.3 電業自由化(Electricity Liberalization) 19
3.4 資源分配(Resource Allocation) 22
第四章 研究方法 28
4.1 基本假設 28
4.2 符號定義 29
4.3 數學模型 30
第五章 電腦實驗 32
5.1 資料蒐集 32
5.2 情境分析 39
第六章 結論與建議 44
6.1 研究總結 44
6.2 後續工作 45
參考文獻 46
參考文獻 中文文獻
[1] ABB(2020)。國際電力市場改革經驗對我國電業法修正之啟示與意涵。網站: https://new.abb.com/tw/about/publication/abb-connects-2017-02/electricity-market-model (上網日期: 2020年3月26日)。
[2] 中租‧全民電廠(2019)。全民電廠運作模式。網站: https://www.finmart.com.tw/Home/ (上網日期: 2019年12月6日)。
[3] 太陽光電單一服務窗口(2019)。太陽光電2年推動計畫。網站: https://reurl.cc/exYg7M(上網日期: 2019年12月6日)。
[4] 太陽光電單一服務窗口(2019)。綠能屋頂全民參與。網站: https://reurl.cc/Wd9gMO (上網日期: 2019年12月6日)。
[5] 尹俞歡(2019) 。用電大戶綠電條款出爐 全台500用電大戶5年內需用1成綠電。網站: https://www.storm.mg/article/1794785 (上網日期: 2019年12月6日)。
[6] 丘秝榕(2018)。前進全綠能發電!全台首座離島大型微電網在七美。網站: https://newtalk.tw/news/view/2018-05-15/124445 (上網日期: 2020年1月2日)。
[7] 台灣電力公司(2018)。2018年台電系統發購電量結構。網站: https://www.taipower.com.tw/tc/page.aspx?mid=204 (上網日期: 2019年12月6日)。
[8] 台灣電力公司(2019)。台電衝刺綠能 彰濱打造全臺首座「潔淨能源中心」。網站: https://www.wealth.com.tw/home/articles/22787 (上網日期: 2020年1月2日)。
[9] 台灣電力公司(2019)。購入電力概況-各縣市太陽光電容量因數。網站: https://www.taipower.com.tw/TC/page.aspx?mid=207&cid=165&cchk=a83cd635-a792-4660-9f02-f71d5d925911#b04 (上網日期: 2020年5月6日)。
[10] 台灣電力公司(2020)。各種發電方式之發電成本。網站: https://www.taipower.com.tw/TC/page.aspx?mid=52(上網日期: 2020年5月6日)。
[11] 台灣電力公司(2020)。購入電力概況-購電現況。網站: https://reurl.cc/GV0vLp(上網日期: 2020年5月6日)。
[12] 全國法規資料庫(2017)。電業法。網站: https://reurl.cc/9E8qLv (上網日期: 2020年3月26日)。
[13] 地球公民基金會(2017)。德國100%綠能村Wildpoldsried。網站: https://www.cet-taiwan.org/node/3052 (上網日期: 2020年1月2日)。
[14] 行政院(2019)。推動風力發電4年計畫—潔淨能源 乘風而起。網站: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/ef93b5c1-85ea-4b5f-ac55-f460d9204258 (上網日期: 2019年12月6日)。
[15] 巫彩蓮(2015)。個股:友達(2409)森勁太陽能電廠今年裝置量為21MW。網站: https://reurl.cc/z8Ry0V (上網日期: 2020年5月8日)。
[16] 曾伊茵(2020)。永續發展:在不影響後代福祉的原則下滿足當代人之需求。網站: https://e-info.org.tw/column/eccpda/2004/ec04072001.htm (上網日期: 2020年2月26日)。
[17] 經濟部能源局(2018)。新及再生能源推動配套方案。網站: https://energywhitepaper.tw/upload/201801/151684997183219.pdf (上網日期: 2019年12月6日)。
[18] 經濟部能源局(2019)。中華民國一百零九年度再生能源電能躉購費率及其計算公式。網站:https://reurl.cc/Njda3m(上網日期: 2020年5月7日)。
[19] 經濟部能源局(2019)。我國燃料燃燒二氧化碳排放統計與分析。
[20] 經濟部標準檢驗局(2019)。我國再生能源憑證制度與憑證市場交易輔導示範計畫。經濟部標準檢驗局。
[21] 綠能科技產業推動中心(2019)。綠能科技產業創新推動方案。網站: http://www.geipc.tw/Strategies.aspx (上網日期: 2019年12月6日)。
[22] 環境資訊中心(2018)。百分百再生能源倡議RE100 谷哥、蘋果等大廠都加入 台灣僅兩家。網站: https://e-info.org.tw/node/99041 (上網日期: 2020年1月2日)。
[23] 環境資訊中心(2019)。陽光屋頂百萬座,我家就是發電廠。網站: https://e-info.org.tw/node/99041 (上網日期: 2019年12月6日)。
英文文獻
[24] Apple Inc. (2020). Apple Supplier List, https://reurl.cc/oDkxO3 (accessed Feb. 27, 2020).
[25] Asal, S., Marcus, R., & Hilbert, J. A. (2006). Opportunities for and obstacles to sustainable biodiesel production in Argentina. Energy for Sustainable Development, 10(2), 48–58.
[26] Bacon, R. W., & Besant-Jones, J. (2001) Global Electric Power Reform, Privatization and Liberalization of the Electric Power Industry in Developing Countries. Annual Review of Environment and Resources, 26, 331–359.
[27] Bahçe, S., & Taymaz, E. (2008). The impact of electricity market liberalization in Turkey. Energy Economics, 30(4), 1603–1624.
[28] Birnie, D. P. (2009). Solar-to-vehicle (S2V) systems for powering commuters of the future. Journal of Power Sources, 186(2), 539–542.
[29] Brannstrom, C., Gorayeb, A., de Sousa Mendes, J., Loureiro, C., Meireles, A. J. de A., Silva, E. V. da., Oliveira, R. F. de. (2017). Is Brazilian wind power development sustainable? Insights from a review of conflicts in Ceará state. Renewable and Sustainable Energy Reviews, 67, 62–71.
[30] Cai, W., Li, X., Maleki, A., Pourfayaz, F., Rosen, M. A., Nazari, M. A., & Bui, D. T. (2020). Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology. Energy, 201, 117480.
[31] Cervantes, J., & Choobineh, F. (2018). Optimal sizing of a nonutility-scale solar power system and its battery storage. Applied Energy, 216, 105–115.
[32] Chedid, R., Mezher, T., & Jarrouche, C. (1999). A fuzzy programming approach to energy resource allocation. International Journal of Energy Research, 23(4), 303–317.
[33] Data.world. (2018). Energy Usage 2010, https://reurl.cc/Njdaqp (accessed May. 8, 2020).
[34] Dong, F., & Shi, L. (2019). Regional differences study of renewable energy performance: A case of wind power in China. Journal of Cleaner Production, 233, 490–500.
[35] Elkington, J. (1994). Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable Development. California Management Review, 36(2), 90–100.
[36] Energy Information Administration. (2017). International Energy Outlook 2017.
[37] Fouquet, R. (1998). The United Kingdom demand for renewable electricity in a liberalised market. Energy Policy, 26 (4), 281–293.
[38] Intergovernmental Panel on Climate Change. (2018). Global Warming of 1.5°C.
[39] International Energy Agency. (2020). Data and statistics. https://reurl.cc/V65rqR (accessed Mar. 29, 2020).
[40] International Renewable Energy Agency. (2019). Renewable Power Generation Costs in 2018.
[41] Kaufman, A. C. (2017). The World’s First Power Plant To Combine Hydro And Solar Opens In Portugal, https://reurl.cc/Znk1La (accessed Jan. 2, 2020).
[42] Kazemi, A., Mehregan, M. R., & Hosseinzadeh, M. (2012). Energy Resource Allocation in Iran: A Fuzzy Multi-Objective Analysis. Procedia - Social and Behavioral Sciences, 41, 334–341.
[43] Li, J. (2018). Optimal Sizing of Grid-Connected Photovoltaic Battery Systems for Residential Houses in Australia. Renewable Energy, 136, 1245–1254.
[44] Liu, G. (2014). Development of a general sustainability indicator for renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 31, 611–621.
[45] Liu, H., & Lin, B. (2017). Cost-based modelling of optimal emission quota allocation. Journal of Cleaner Production, 149, 472–484.
[46] Liu, J., Niu, D., & Song, X. (2013). The energy supply and demand pattern of China: A review of evolution and sustainable development. Renewable and Sustainable Energy Reviews, 25, 220–228.
[47] Nanbin, X., & Jinxin, T. (2011). Mixed Optimal Algorithm of Resource Allocation in Energy Industry. Energy Procedia, 5, 322–331.
[48] Nazir, M. S., Ali, N., Bilal, M., & Iqbal, H. M. N. (2020). Potential environmental impacts of wind energy development – A global perspective. Current Opinion in Environmental Science & Health, 13, 85–90.
[49] Renewable Energy Policy Network for the 21st Century. (2019). Renewables 2019 Global Status Report.
[50] Ringel, M. (2003). Liberalising European electricity markets: opportunities and risks for a sustainable power sector. Renewable and Sustainable Energy Reviews, 7(6), 485–499.
[51] Shaikh, P. H., Nor, N. B. M., Sahito, A. A., Nallagownden, P., Elamvazuthi, I., & Shaikh, M. S. (2017). Building energy for sustainable development in Malaysia: A review. Renewable and Sustainable Energy Reviews, 75, 1392–1403.
[52] Shiau, J. K., & Ma, D. M. (2015). Development of an experimental solar-powered unmanned aerial vehicle. Journal of the Chinese Institute of Engineers, 38(6), 701–713.
[53] Sioshansi, F. P. (2006). Electricity Market Reform: What Have We Learned? What Have We Gained? The Electricity Journal, 19(9), 70–83.
[54] Stambouli, A. B., Khiat, Z., Flazi, S., & Kitamura, Y. (2012). A review on the renewable energy development in Algeria: Current perspective, energy scenario and sustainability issues. Renewable and Sustainable Energy Reviews, 16(7), 4445–4460.
[55] The Carbon Trust. (2012). Making Sense of Renewable Energy Technologies.
[56] The Climate Group and Carbon Disclosure Project. (2019). RE100, http://there100.org/ (accessed Jan. 2, 2020).
[57] The Western Systems Power Pool. (2020). WSPP Agreement Description, https://reurl.cc/O1Wxj3 (accessed Apr. 6, 2020).
[58] United Nations. (1972). Declaration of the United Nations Conference on the Human Environment.
[59] United Nations. (2015). Paris Agreement, https://reurl.cc/NjAl4k (accessed Dec. 19, 2019).
[60] Wang, Z., Lin, X., Tong, N., Li, Z., Sun, S., & Liu, C. (2020). Optimal planning of a 100% renewable energy island supply system based on the integration of a concentrating solar power plant and desalination units. International Journal of Electrical Power & Energy Systems, 117, 105707.
[61] Wen, S., Lan, H., Yu, D. C., Fu, Q., Hong, Y. Y., Yu, L., & Yang, R. (2017). Optimal sizing of hybrid energy storage sub-systems in PV/diesel ship power system using frequency analysis. Energy, 140, 198–208.
[62] World Commission on Environment and Development. (1987). Our Comment Future.
[63] World Meteorological Organization. (2019). The Global Climate in 2015–2019.
[64] World Wildlife Fund. (2016). Corporate Renewable Energy Procurement: A Snapshot of Key Trends, Strategies and Practices in 2016.
[65] Zhang, K., & Wen, Z. (2008). Review and challenges of policies of environmental protection and sustainable development in China. Journal of Environmental Management, 88(4), 1249–1261.
[66] Zhang, X., Xu, L., Chen, Y., & Liu, T. (2020). Emergy-based ecological footprint analysis of a wind farm in China. Ecological Indicators, 111, 106018.
[67] Zhang, Y., Ren, J., Pu, Y., & Wang, P. (2019). Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renewable Energy, 149, 577–586.
指導教授 王啓泰(Chi-Tai Wang) 審核日期 2020-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明