博碩士論文 107324046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.145.59.187
姓名 宋品瑢(Pin-Jung Sung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 新型類液態固體材料- 耐紫外光自癒性乳液非晶質用於三維列印支撐材
(UV-resistant Self-healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 第一部分
新型類液態固體材料-耐紫外光自癒性乳液非晶質用於三維列印支撐材
在現今科技發展中三維列印技術(3D printing)越發受到重視,對於固化時間較長的印刷油墨(printing inks)會需要支撐材(supporting mediums)輔助,而具備適當強度且易清洗的類液態固體(liquid-like solid)常被應用於此,本研究提供一種乳液系統的類液態固體作為光固化型與熱固化型3D列印的支撐材,由矽油/山梨糖醇/十二烷基硫酸鈉/水 透過低能量方式製成,設計分散的油相體積分率超過85%並施加剪應力,使微米級油滴緊密堆積於水相中形成不流動的乳液非晶質(emulsion glass),而被擠壓的油滴結構使乳液非晶質具黏彈性與自癒能力(self-healing),屬於新型的類液態固體材料。而研究發現隨著油黏度與油含量上升,降伏強度(yield stress)也隨之上升,此性質可用於搭配不同黏性與強度的印刷油墨,同時,這種乳液非晶質在光固化與熱固化過程後仍可重複回收使用達6次,在未來可望有更多發展應用。

第二部份
延續第一部份關於乳液非晶質的探討,此章節改變了乳液製備方法和調整油/水/界面活性劑之間比例,來獲得熱力學穩定的類固體(solid-like) 微乳液,表現出類固體的性質,也成功應用於3D列印支撐材。此研究的乳液系統是以癸烷為油相,硫琥辛酯鈉與山梨醇酯80/山梨醇酐酯80為界面活性劑,以相轉換方法(Phase-inversion method)形成水包油微乳液(O/W microemulsion),實驗中發現在持續添加水的相轉換過程中,水含量達一範圍值時乳液會呈現類固態性質,乳液會呈現類固態性質,其中,以山梨醇酯80/山梨醇酐酯80組合作為界面活性劑的乳液系統,在不同製備方法和長時間觀察下皆可量測出相似特性,表現熱力學穩定性,且透過加裝偏光片的光學顯微鏡觀察到類晶體的結構。接著我們透過調整界面活性劑親酯親水性(Hydrophilic-lipophilic balance)和油/水比例得到不同降伏強度的類固體微乳液,並實際作為3D列印的支撐材。
摘要(英) Chapter 1
UV-resistant Self-healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing.
Directly writing 3D structures into supporting mediums is a relatively new developing technology in additive manufacturing. In this work, durable and recyclable liquid-like solid (LLS) materials are developed as supporting mediums that are stable for both UV- and thermal-solidification. Our LLS material is comprised of densely packed oil droplets in a continuous aqueous medium, known as emulsion glass. Its elastic nature emerges from the jammed structure of oil droplets, which offers this LLS material rapidly self-healing ability. Moreover, the yield stress of the glass is relatively low and can be tuned by the viscosity and weight percentage of oil. The capability of the emulsion glass as supporting mediums is successfully demonstrated by directly writing and then curing designed structures. The emulsion glass has been repeatedly used at least 6 times upon exposure to UV irradiation and heat, implying it can expand the applications of supporting medium to the writing process involving UV- and thermal-curable inks simultaneously.

Chapter 2
In the second part, we changed the preparing procedures and the ratio of oil/water/surfactant in emulsions. Two emulsion systems formed by low-energy phase inversion methods are studied. The oil phase is decane while the surfactant is Tween 80 and Span 80 for system 1 and Dioctyl sulfosuccinate sodium salt (AOT) for system 2.
With increasing the water content, the sample transited from liquid-like water-in-oil (W/O) emulsion to solid-like oil-in-water (O/W) emulsion. Eventually, liquid-like O/W emulsion was obtained as the amount of water is higher than 60wt%. The thermodynamic stability of solid-like O/W emulsion were confirmed by different preparation methods and long-term observation, it can be classified to be microemulsions. We also found that the viscoelastic property of the solid-like emulsions can be tuned by varying hydrophilic-lipophilic balance (HLB) and water content.
關鍵字(中) ★ 三維列印
★ 水包油乳液
關鍵字(英) ★ 3D printing
★ oil-in-water emulsion
論文目次 Contents
Abstract I
摘要 III
致謝 V
Contents VI
List of Figures VIII
List of Tables XI
Chapter 1 UV-resistant Self-healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing 1
1-1 Introduction 1
1-2 Experiment Section 4
1-2-1 Material 4
1-2-2 Apparatus 4
Particle size measurements 4
Viscoelasticity measurement 5
Three dimension writing instrument 5
UV oven curing box 5
1-2-3 Methods 6
Preparation of the stable silicone oil-in-water emulsion glass 6
Preparation of the thermal-curing inks 6
Solidification of the written inks 7
1-3 Results and Discussion 8
1-4 Conclusions 21
1-5 Reference 22

Chapter 2
2-1 Introduction 25
2-2 Experiment Section 27
2-2-1 Material 27
2-2-2 Apparatus 27
Particle size measurements 27
Viscoelasticity measurement 28
2-2-3 Methods 28
Phase-inversion method 28
Calculation of HLB value 28
2-3 Result and Discussion 29
Phase inversion process 29
Solid-like behavior in certain water amount range 32
Thermodynamic stability 34
Influence of surfactant fractions (HLB) 36
Application: 3D printing supporting medium 40
2-4 Conclulsions 42
2-5 Reference 43
參考文獻 [1] Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., ... & Wicker, R. B. (2012). Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Journal of Materials Science & Technology, 28(1), 1-14.
[2] O’Bryan, C. S., Bhattacharjee, T., Hart, S., Kabb, C. P., Schulze, K. D., Chilakala, I., Angelini, T. E. (2017). Self-assembled micro-organogels for 3D printing silicone structures. Science advances, 3(5), e1602800.
[3] Taylor, A. D., Kim, E. Y., Humes, V. P., Kizuka, J., & Thompson, L. T. (2007). Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. Journal of Power Sources, 171(1), 101-106..
[4] Dilberoglu, U. M., Gharehpapagh, B., Yaman, U., & Dolen, M. (2017). The role of additive manufacturing in the era of industry 4.0. Procedia Manufacturing, 11, 545-554.
[5] Hinton, T. J., Jallerat, Q., Palchesko, R. N., Park, J. H., Grodzicki, M. S., Shue, H. J., ... & Feinberg, A. W. (2015). Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances, 1(9), e1500758..
[6] Bhattacharjee, T., Zehnder, S. M., Rowe, K. G., Jain, S., Nixon, R. M., Sawyer, W. G., & Angelini, T. E. (2015). Writing in the granular gel medium. Science Advances, 1(8), e1500655.
[7] Highley, C. B., Rodell, C. B., & Burdick, J. A. (2015). Direct 3D printing of shear‐thinning hydrogels into self‐healing hydrogels. Advanced Materials, 27(34), 5075-5079.
[8] Hinton, T. J., Hudson, A., Pusch, K., Lee, A., & Feinberg, A. W. (2016). 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomaterials Science & Engineering, 2(10), 1781-1786.
[9] Tadros, T. F. (2016). Emulsions: Formation, Stability, Industrial Applications. Walter de Gruyter GmbH & Co KG.
[10] Yu, Y., Liu, F., Zhang, R., & Liu, J. (2017). Suspension 3D Printing of Liquid Metal into Self‐Healing Hydrogel. Advanced Materials Technologies, 2(11), 1700173.
[11] Stokes, J. R., & Frith, W. J. (2008). Rheology of gelling and yielding soft matter systems. Soft Matter, 4(6), 1133-1140.
[12] Nishinari, K. (2009). Some thoughts on the definition of a gel. In Gels: Structures, Properties, and Functions (pp. 87-94). Springer, Berlin, Heidelberg.
[13] Wang, Z., An, G., Zhu, Y., Liu, X., Chen, Y., Wu, H., ... & Mao, C. (2019). 3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks. Materials Horizons, 6(4), 733-742.
[14] Bagheri, A., & Jin, J. (2019). Photopolymerization in 3D printing. ACS Applied Polymer Materials, 1(4), 593-611.
[15] Singh, V., Nguyen, T. P., Sheng, Y. J., & Tsao, H. K. (2018). Stress-Driven Separation of Surfactant-Stabilized Emulsions and Gel Emulsions by Superhydrophobic/Superoleophilic Meshes. The Journal of Physical Chemistry C, 122(43), 24750-24759.
[16] Patel, A. R., Rodriguez, Y., Lesaffer, A., & Dewettinck, K. (2014). High internal phase emulsion gels (HIPE-gels) prepared using food-grade components. RSC Advances, 4(35), 18136-18140.
[17] Cameron, N. R., Sherrington, D .C. (2005). Advances in Polymer Science. Springer Berlin, Heidelberg.
[18] Xu, Y. T., Liu, T. X., & Tang, C. H. (2019). Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin. Food Hydrocolloids, 88, 21-30.
[19] Tanaka, H., Meunier, J., & Bonn, D. (2004). Nonergodic states of charged colloidal suspensions: Repulsive and attractive glasses and gels. Physical Review E, 69(3), 031404.
[20] Lukić, M., Clarke, J., Tuck, C., Whittow, W., & Wells, G. (2016). Printability of elastomer latex for additive manufacturing or 3D printing. Journal of Applied Polymer Science, 133(4).
[21] Tian, K., Bae, J., Bakarich, S. E., Yang, C., Gately, R. D., Spinks, G. M., ... & Vlassak, J. J. (2017). 3D printing of transparent and conductive heterogeneous hydrogel–elastomer systems. Advanced Materials, 29(10), 1604827.
[22] Plott, J., & Shih, A. (2017). The extrusion-based additive manufacturing of moisture-cured silicone elastomer with minimal void for pneumatic actuators. Additive Manufacturing, 17, 1-14.
[23] Ono, F., Shinkai, S., & Watanabe, H. (2018). High internal phase water/oil and oil/water gel emulsions formed using a glucose-based low-molecular-weight gelator. New Journal of Chemistry, 42(9), 6601-6603.
[24] George, M., & Weiss, R. G. (2006). Low molecular-mass organic gelators. In Molecular Gels (pp. 449-551). Springer, Dordrecht.
[25] Bhattacharjee, T., Gil, C. J., Marshall, S. L., Urueña, J. M., O’Bryan, C. S., Carstens, M., ... & Sawyer, W. G. (2016). Liquid-like solids support cells in 3D. ACS Biomaterials Science & Engineering, 2(10), 1787-1795.
[26] Shanti, R., Hadi, A. N., Salim, Y. S., Chee, S. Y., Ramesh, S., & Ramesh, K. (2017). Degradation of ultra-high molecular weight poly (methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation. RSC advances, 7(1), 112-120.

[1] Tadros, T. F. (2016). Emulsions: Formation, Stability, Industrial Applications. Walter de Gruyter GmbH & Co KG.
[2] Soma, J., & Papadopoulos, K. D. (1996). Ostwald ripening in sodium dodecyl sulfate-stabilized decane-in-water emulsions. Journal of Colloid and Interface Science, 181(1), 225-231.
[3] Alam, M. M., & Aramaki, K. (2008). Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): Formation and rheology. Langmuir, 24(21), 12253-12259.
[4] McClements, D. J., Dungan, S. R., German, J. B., Simoneau, C., & Kinsella, J. E. (1993). Droplet size and emulsifier type affect crystallization and melting of hydrocarbon‐in‐water emulsions. Journal of Food Science, 58(5), 1148-1151.
[5] TAN, Ying, et al. Fabrication of starch-based nanospheres to stabilize pickering emulsion. Carbohydrate polymers, 2012, 88.4: 1358-1363.
[6] Tan, Y., Xu, K., Liu, C., Li, Y., Lu, C., & Wang, P. (2012). Fabrication of starch-based nanospheres to stabilize pickering emulsion. Carbohydrate Polymers, 88(4), 1358-1363.
[7] Delmas, T., Piraux, H., Couffin, A. C., Texier, I., Vinet, F., Poulin, P., ... & Bibette, J. (2011). How to prepare and stabilize very small nanoemulsions. Langmuir, 27(5), 1683-1692.
[8] Steiner, U., Meller, A., & Stavans, J. (1995). Entropy driven phase separation in binary emulsions. Physical Review Letters, 74(23), 4750.
[9] Gupta, A., Badruddoza, A. Z. M., & Doyle, P. S. (2017). A general route for nanoemulsion synthesis using low-energy methods at constant temperature. Langmuir, 33(28), 7118-7123.
[10] Jin, H., Wang, X., Chen, Z., Li, Y., Liu, C., & Xu, J. (2018). Fabrication of β-conglycinin-stabilized nanoemulsions via ultrasound process and influence of SDS and PEG 10000 co-emulsifiers on the physicochemical properties of nanoemulsions. Food Research International, 106, 800-808.
[11] Perazzo, A., Preziosi, V., & Guido, S. (2015). Phase inversion emulsification: Current understanding and applications. Advances in Colloid and Interface Science, 222, 581-599.
[12] Pusey, P. N., & van Megen, W. (1987). Observation of a glass transition in suspensions of spherical colloidal particles. Physical Review Letters, 59(18), 2083.
[13] Wang, L., Mutch, K. J., Eastoe, J., Heenan, R. K., & Dong, J. (2008). Nanoemulsions prepared by a two-step low-energy process. Langmuir, 24(12), 6092-6099.
[14] Porras, M., Solans, C., Gonzalez, C., & Gutierrez, J. M. (2008). Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324(1-3), 181-188.
[15] Tong, K., Zhao, C., Sun, Z., & Sun, D. (2015). Formation of concentrated nanoemulsion by W/O microemulsion dilution method: biodiesel, tween 80, and water system. ACS Sustainable Chemistry & Engineering, 3(12), 3299-3306.
[16] Song, D., Zhang, W., Gupta, R. K., & Melby, E. G. (2011). Role of operating conditions in determining droplet size and viscosity of tackifier emulsions formed via phase inversion. AIChE Journal, 57(1), 96-106.
[17] Kotlarchyk, M., Chen, S. H., Huang, J. S., & Kim, M. W. (1984). Structure of three-component microemulsions in the critical region determined by small-angle neutron scattering. Physical Review A, 29(4), 2054.
[18] Koneva, A. S., Safonova, E. A., Kondrakhina, P. S., Vovk, M. A., Lezov, A. A., Chernyshev, Y. S., & Smirnova, N. A. (2017). Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants SPAN 80/TWEEN 80. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 273-282.
[19] Forgiarini, A., Esquena, J., González, C., & Solans, C. (2000). Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. In Trends in Colloid and Interface Science XIV (pp. 36-39). Springer, Berlin, Heidelberg.
[20] Gupta, A., Badruddoza, A. Z. M., & Doyle, P. S. (2017). A general route for nanoemulsion synthesis using low-energy methods at constant temperature. Langmuir, 33(28), 7118-7123.
[21] Fogden, A., Hyde, S. T., & Lundberg, G. (1991). Bending energy of surfactant films. Journal of the Chemical Society, Faraday Transactions, 87(7), 949-955.
[22] Boyd, J. V., Parkinson, C., & Sherman, P. (1972). Factors affecting emulsion stability, and the HLB concept. Journal of Colloid and Interface Science, 41(2), 359-370.
[23] Mayer, S., Weiss, J., & McClements, D. J. (2013). Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability. Journal of Colloid and Interface Science, 402, 122-130.
[24] Chang, D. P., Barauskas, J., Dabkowska, A. P., Wadsäter, M., Tiberg, F., & Nylander, T. (2015). Non-lamellar lipid liquid crystalline structures at interfaces. Advances in Colloid and Interface Science, 222, 135-147.
[25] McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719-1729.
[26] Larche, F. C., & Delord, P. (1985). Structures and stability of isotropic phases in the AOT-decane-water system. Fluid Phase Equilibria, 20, 257-264.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2020-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明