博碩士論文 107426022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.129.45.92
姓名 張惠筑(Hui-Chu Chang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以多屬性法則探討TFT-LCD廠Array製程區的Stacker Crane之Cassette選取問題
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於資訊科技的快速發展,薄膜電晶體液晶顯示器(TFT-LCD)為生活帶來更高的便利性和使用性,逐漸影響人們的數位化生活。為了提升台灣TFT-LCD產業在國際間的競爭力,除了導入自動化生產系統外,企業傾向興建更大尺寸的面板廠,尺寸越大能使單片基板可切割出的片數越多,增加產量之外也使單位生產成本降低,但隨著尺寸逐漸增大,進而衍生出更大尺寸面板的搬運需求,因此面對大尺寸玻璃基板的搬運需求,如何更有效率地搬運,使生產效率提升,是本研究探討之重點。
現今自動化物料搬運系統(AMHS)為TFT-LCD廠自動化生產的核心,而AMHS系統主要是由無人搬運車(AGV)、有軌式無人搬運車(RGV)和林坤濱(2008)所提出的內嵌式自動倉儲(In-Line Stocker)的有軌巷道堆高機(Stacker Crane)所組成,本研究將會在AMHS的系統環境下針對大尺寸玻璃基板搬運流動規劃進行深入的探討,模擬物料搬運控制策略與生產流程之間的關係,期望能證明車輛搬運控制策略對TFT-LCD生產效率有正面的影響。
本研究將研究探討重點放在第八代TFT-LCD廠Array製程中的製程區內搬運活動,探討Stacker Crane之Cassette選取問題對於整體系統的影響,提出多屬性派送控制法則,根據先前研究之單屬性法則分析結果來作為權重設定的參考依據,並針對先前模擬環境進行修正。最後透過仿真模擬軟體Arena 15.0建構新的環境,並利用SPSS 22.0分析觀察多屬性法則與單屬性法則之產出量、平均流程時間、平均延遲時間、平均提早時間和平均差異時間之比較,以此判斷多屬性派送法則是否有顯著提升整個系統派送控制之效率。
摘要(英) Due to the rapid development of information technology, thin-film transistor liquid crystal display (TFT-LCD) brings higher convenience and usability to life, and gradually affects people′s digital life. In order to promote the international competitiveness of Taiwan′s TFT-LCD industry, in addition to the introduction of automated production systems, companies have increased the construction of large-scale panel factories. The size enables the number of single-piece substrates that can be cut out to increase output. The unit production cost is reduced, but the size must be gradually expanded, and the slenderness leads to the demand for handling large-sized panels. Therefore, in the face of the demand for handling large-size glass substrates, how to overcome the efficiency of handling and improve production efficiency is the focus of this study.
Nowadays automated material handling system (AMHS) is the core of TFT-LCD factory automation production, and the AMHS system is mainly built by the unmanned vehicle (AGV), railless unmanned vehicle (RGV) and Lin Kunbin (2008). In-Line Stocker (In-Line Stocker) is composed of a rail roadway stacker (Stacker Crane). This study will conduct an in-depth discussion of the large-scale glass substrate handling flow planning under the AMHS system environment, and simulate material handling control. The relationship between the strategy and the production process is expected to prove that the vehicle handling control strategy has a positive impact on the TFT-LCD production efficiency.
This study inherits the paper of Wang (2019) and research Intra-Bay handling and Inter-Bay handling in the Array process of the eighth generation TFT-LCD panel factory. Discuss a decision-making problems here : the selection problem of Stacker Crane’s Cassette, and propose a multi-attribute dispatch control rule. According to previous research At last, the simulation environment software Arena 15.0 is used to reconstruct the new environment, and SPSS 22.0 is used to analyze and compare the replacement amount of the multi-attribute rule and the single-attribute rule, the average process time, the average delay time, the average early time and the average difference time. Determine whether the multi-attribute dispatching law has significantly improved the efficiency of dispatch control for the entire system.
關鍵字(中) ★ TFT-LCD
★ AMHS
★ Intra-Bay搬運
★ Stacker Crane
★ 多屬性派送控制法則
關鍵字(英) ★ TFT-LCD
★ AMHS
★ Intra-Bay handling
★ Stacker Crane
★ Multiple Attribute dispatching control rule
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 ix
表目錄 xii
第一章、 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究環境 4
1.4 論文架構 6
第二章、 文獻探討 9
2.1 TFT-LCD之結構組成與製程 10
2.1.1 Array製程 11
2.1.2 Cell製程(面板) 12
2.1.3 Module製程(模組) 13
2.2 TFT-LCD廠自動化物料搬運系統 14
2.3 無人搬運車派送之相關研究 17
2.3.1 無人搬運車(Automatic Guided Vehicle,AGV)的派送問題 17
2.3.2 有軌式無人搬運車(Rail Guide Vehicle,RGV)的派送問題 22
2.3.3 具有儲存功能與搬運功能的S/R Machine相關的派送問題 24
2.4 TFT-LCD廠與半導體晶圓廠AMHS派送控制相關研究 26
2.5 多屬性自動化物料搬運系統派送控制相關研究 30
第三章、 研究方法 33
3.1 研究環境說明 33
3.2 作業流程符號及變數定義 35
3.3 TFT-LCD系統中Array製程之工作站與無人搬運車作業流程 35
3.3.1 Cassette進入系統之左側工作站流程 35
3.3.2 Cassette進入系統之右側工作站流程 36
3.3.3 左側RGV之派送作業流程 37
3.3.3.1 左側無人搬運車 LRGV J的派送流程 40
3.3.3.1.1 LRGV J 執行左側RGV程序一 41
3.3.3.1.2 RRGV J 執行右側RGV程序二 42
3.3.3.1.3 RRGV J 執行右側RGV程序三 42
3.3.4 右側RGV之派送作業流程 43
3.3.4.1 右側無人搬運車 RRGV J 的派送流程 44
3.3.4.1.1 RRGV J 執行右側RGV程序一 45
3.3.4.1.2 RRGV J 執行右側RGV程序二 46
3.3.4.1.3 RRGV J 執行右側RGV程序三 47
3.3.5 In-Line Stocker之一般加工機台作業流程 48
3.3.6 In-Line Stocker之Stacker Crane作業流程 49
3.3.6.1 Inline Stocker I之Stacker Crane S(I)派送流程一 52
3.3.6.1.1 Stacker Crane S(I)執行程序一 54
3.3.6.1.2 Stacker Crane S(I)執行程序二 54
3.3.6.1.3 Stacker Crane S(I)執行程序三 55
3.3.6.1.4 Stacker Crane S(I)執行程序四 56
3.3.6.2 Inline Stocker I之Stacker Crane S(I)派送流程二 57
3.3.7 完成品集中工作站之作業流程 58
3.4 研究方法整理 59
3.4.1 Stacker Crane之Cassette多屬性選取法則 60
3.4.2 RGV之Cassette多屬性選取法則 63
3.4.3 Stacker Crane之Cassette單屬性選取法則 64
3.4.3.1 隨機選取法則 64
3.4.3.2 到期日最早的Cassette優先選取法則 64
3.4.3.3 剩餘加工時間最少的Cassette優先選取法則 65
3.4.3.4 剩餘加工時間最多的Cassette優先選取法則 65
3.4.3.5 寬鬆時間最少的Cassette優先選取法則 66
3.4.3.6 (寬鬆時間/剩餘加工時間)最少的Cassette優先選取法則 66
3.4.3.7 最早進入系統的Cassette優先選取法則 67
3.4.4 RGV之Cassette單屬性選取法則 67
第四章、 實驗結果與分析 68
4.1 模擬實驗設計 68
4.1.1 模擬實驗環境設定 68
4.1.2 模擬系統設定 69
4.1.3 實驗因子組合 70
4.1.4 績效評估指標 73
4.2 統計分析 74
4.2.1 以產出量(Throughput)為績效評估值 74
4.2.1.1 RGV之Cassette選取問題搭配隨機選取法則(RgvRND) 74
4.2.1.1.1 搭配RgvRND之Stacker Crane之Cassette選取法則 (以Throughput為績效值) 75
4.2.1.2 RGV之Cassette選取問題搭配剩餘加工時間最少選取法則(RgvSRPT) 76
4.2.1.2.1 搭配RgvSRPT之Stacker Crane之Cassette選取法則(以Throughput為績效值) 77
4.2.1.3 RGV之Cassette選取問題搭配多屬性選取法則(RgvMultiple) 78
4.2.1.3.1 搭配RgvMultiple之Stacker Crane之Cassette選取法則 (以Throughput為績效值) 79
4.2.2 以平均流程時間(Average Flow Time,AFT)為績效評估值 80
4.2.2.1 RGV之Cassette選取問題搭配隨機選取法則(RgvRND) 80
4.2.2.1.1 搭配RgvRND之Stacker Crane之Cassette選取法則(以AFT為績效值) 81
4.2.2.2 RGV之Cassette選取問題搭配剩餘加工時間最少選取法則(RgvSRPT) 81
4.2.2.2.1 搭配RgvSRPT之Stacker Crane之Cassette 選取法則(以AFT為績效值) 81
4.2.2.3 RGV之Cassette選取問題搭配多屬性選取法則(RgvMultiple) 82
4.2.2.3.1 搭配RgvMultiple之Stacker Crane之Cassette選取法則(以AFT為績效值) 83
4.2.3 以平均延遲時間(Average Tardiness Time,ATT)為績效評估值 83
4.2.3.1 RGV之Cassette選取問題搭配隨機選取法則(RgvRND) 83
4.2.3.1.1 搭配RgvRND之Stacker Crane之Cassette選取法則(以ATT為績效值) 84
4.2.3.2 RGV之Cassette選取問題搭配剩餘加工時間最少選取法則(RgvSRPT) 84
4.2.3.2.1 搭配RgvSRPT之Stacker Crane之Cassette選取法則(以ATT為績效值) 84
4.2.3.3 RGV之Cassette選取問題搭配多屬性選取法則(RgvMultiple) 85
4.2.3.3.1 搭配RgvMultiple之Stacker Crane之Cassette選取法則(以ATT為績效值) 86
4.2.4 以平均提早時間(Average Earliness Time,AET)為績效評估值 86
4.2.4.1 RGV之Cassette選取法則搭配隨機選取法則(RgvRND) 86
4.2.4.1.1 搭配RgvRND之Stacker Crane之Cassette選取法則(以AET為績效值) 87
4.2.4.2 RGV之Cassette選取問題搭配剩餘加工時間最少選取法則(RgvSRPT) 88
4.2.4.2.1 搭配RgvSRPT之Stacker Crane之Cassette選取法則(以AET為績效值) 88
4.2.4.3 RGV之Cassette選取問題搭配多屬性選取法則(RgvMultiple) 89
4.2.4.3.1 搭配RgvMultiple之Stacker Crane之Cassette選取法則(以AET為績效值) 90
4.2.5 以平均差異時間(Average Lateness Time,ALT)為績效評估值 91
4.2.5.1 RGV之Cassette選取法則搭配隨機選取法則(RgvRND) 91
4.2.5.1.1 搭配RgvRND之Stacker Crane之Cassette選取法則(以ALT為績效值) 92
4.2.5.2 RGV之Cassette選取問題搭配剩餘加工時間最少選取法則(RgvSRPT) 92
4.2.5.2.1 搭配RgvSRPT之Stacker Crane之Cassette選取法則(以ALT為績效值) 92
4.2.5.3 RGV之Cassette選取問題搭配多屬性選取法則(RgvMultiple) 93
4.2.5.3.1 搭配RgvMultiple之Stacker Crane之Cassette選取法則(以ALT為績效值) 94
4.3 實驗結論 94
4.3.1 RGV之Cassette選取問題搭配隨機選取法則之情況(RgvRND) 94
4.3.2 RGV之Cassette選取問題搭配剩餘加工時間最少選取法則(RgvSRPT) 95
4.3.3 RGV之Cassette選取問題搭配多屬性選取法則(RgvMultiple) 95
第五章、 結論與後續建議 96
5.1 研究結論 96
5.2 未來研究建議 97
參考文獻 98
中文文獻 98
英文文獻 99
相關網站 105
參考文獻 中文文獻
1. 王淳禾(2019)。TFT-LCD廠之Array製程區的Stacker Crane Cassette選取與In-Line Stocker出口點選取探討。國立中央大學工業管理研究所碩士發表之論文,桃園市。
2. 阮昱瑋(2019)。TFT-LCD廠之Array製程區的RGV派送控制研究。國立中央大學工業管理研究所碩士發表之論文,桃園市。
3. 林坤濱(2008)。內嵌式自動倉儲(In-line Stocker)於大尺寸面板廠應用之探討–以TFT-LCD公司為例。中央大學工業管理研究所碩士在職專班碩士論文,桃園市。
4. 洪楷力(2020)。以多屬性法則研究TFT-LCD廠的RGV之選取Cassette問題。國立中央大學工業管理研究所碩士未發表之論文,桃園市。
5. 紀碧如(2006)。基因演算法用於增加產能的研究-以TFT-LCD廠Array製程RGV搬送為例。國立交通大學電機資訊學院碩士在職專班碩士論文,新竹市。 取自https://hdl.handle.net/11296/w22y3z
6. 張軒銘(2018)。TFT-LCD廠之自動化搬運系統的多屬性派送控制方法。國立中央大學工業管理研究所碩士論文,桃園市。 取自https://hdl.handle.net/11296/7t7j5v
7. 楊景如(2008)。晶圓廠自動化物料搬運系統之搬運策略模擬研究。國立交通大學工業工程與管理學系博士論文,新竹市。取自https://hdl.handle.net/11296/86d373
8. 劉顥程(2012)。製造系統之無人搬運車的控制問題研究。國立中央大學工業管理研究所博士論文,桃園市。取自https://hdl.handle.net/11296/56cme9
9. 蘇騰昇(2012)。在TFT-LCD廠的設施佈置與自動化物料搬運系統控制之研究。國立中央大學工業管理研究所博士論文,桃園市。取自https://hdl.handle.net/11296/b6yju3

英文文獻
1. Azimi, P., Haleh, H., & Alidoost, M. (2010). The selection of the best control rule for a multiple-load AGV system using simulation and fuzzy MADM in a flexible manufacturing system. Modelling and Simulation in Engineering, 2010, 7.
2. Bilge, Ü., Esenduran, G., Varol, N., Öztürk, Z., Aydın, B., & Alp, A. (2006). Multi-attribute responsive dispatching strategies for automated guided vehicles. International Journal of Production Economics, 100(1), 65-75.
3. Bozer, Y. A., & Eamrungroj, C. (2017). Throughput analysis of multi-device trip-based material handling systems operating under the modified-FCFS dispatching rule. International Journal of Production Research, 56(4), 1486-1503.
4. Bozer, Y. A., & Yen, C. K. (1996). Intelligent dispatching rules for trip-based material handling systems. Journal of Manufacturing Systems, 15(4), 226-239.
5. Brezovnik, S., Gotlih, J., Balič, J., Gotlih, K., & Brezočnik, M. (2015). Optimization of an automated storage and retrieval systems by swarm intelligence. Procedia Engineering, 100, 1309-1318.
6. Caridá, V. F., Morandin, O., & Tuma, C. C. M. (2015). Approaches of fuzzy systems applied to an AGV dispatching system in a FMS. The International Journal of Advanced Manufacturing Technology, 79(1-4), 615-625.
7. Cho, H. M., & Jeong, I. J. (2017). A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops. Computers & Industrial Engineering, 106, 174-181.
8. Confessore, G., Fabiano, M., & Liotta, G. (2013). A network flow based heuristic approach for optimising AGV movements. Journal of Intelligent Manufacturing, 24(2), 405-419. 
9. Cong, P. A. N., Zhang, J., & Wei, Q. I. N. (2017). Real-time OHT Dispatching Mechanism for the Interbay Automated Material Handling System with Shortcuts and Bypasses. Chinese Journal of Mechanical Engineering, 30(3), 663-675.
10. Egbelu, P. J., & Tanchoco, J. M. (1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), 359-374.
11. Gola, A., & Kłosowski, G. (2019). Development of computer-controlled material handling model by means of fuzzy logic and genetic algorithms. Neurocomputing.
12. Ho, Y. C., & Chien, S. H. (2006). A simulation study on the performance of task-determination rules and delivery-dispatching rules for multiple-load AGVs. International journal of production research, 44(20), 4193-4222.
13. Ho, Y. C., Lin, J. W., Liu, H. C., & Yih, Y. (2016). A study on the lot production management in a thin-film-transistor liquid-crystal display fab. Journal of Manufacturing Systems, 40, 9-25.
14. Ho, Y. C., Liu, H. C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load AGVs. Journal of manufacturing systems, 31(3), 288-300.
15. Hu, P., Chen, H., Wang, X., & Shi, M. (2019, November). Model and Algorithm for Co-scheduling of Stackers and Single RGV during retrieval Process in AS/RS. In IOP Conference Series: Materials Science and Engineering (Vol. 688, No. 5, p. 055083). IOP Publishing.
16. Hu, W., Mao, J., & Wei, K. (2013, August). Energy-efficient dispatching solution in an automated air cargo terminal. In 2013 IEEE International Conference on Automation Science and Engineering (CASE) (pp. 144-149). IEEE.
17. Huang, Y. S., & Chen, H. W. (2016). A mixed dispatching rule for semiconductor wafer fabrication. International Journal of Systems Science: Operations & Logistics, 5(3), 195-203. 
18. Hwang, S., Hong, S. P., & Jang, Y. J. (2018, August). Dynamic scheduling of the dual stocker system using reinforcement learning. In IFIP International Conference on Advances in Production Management Systems (pp. 482-489). Springer, Cham.
19. Jang, Y. J., Choi, G. H., & Kim, S. I. (2005, September). Modeling and analysis of stocker system in semiconductor and LCD fab. In ISSM 2005, IEEE International Symposium on Semiconductor Manufacturing, 2005. (pp. 273-276). IEEE.
20. Jeong, B. H., & Randhawa, S. U. (2001). A multi-attribute dispatching rule for automated guided vehicle systems. International Journal of Production Research, 39(13), 2817-2832.
21. Jin, M., & Wang, Y. (2017). Task Scheduling for Autonomous Shuttle and Stacker Crane Warehousing Systems. In IIE Annual Conference. Proceedings (pp. 970-975). Institute of Industrial and Systems Engineers (IISE).
22. Klei, C. M., & Kim, J. (1996). AGV dispatching. International Journal of Production Research, 34(1), 95-110.
23. Kung, Y., Kobayashi, Y., Higashi, T., Sugi, M., & Ota, J. (2014). Order scheduling of multiple stacker cranes on common rails in an automated storage/retrieval system. International Journal of Production Research, 52(4), 1171-1187.
24. Lee, J. and MANEESAVET, R. (1999). Dispatching rail-guided vehicles and scheduling jobs in a flexible manufacturing system. International journal of production research, 37(1), 111-123.
25. Lee, J., & Srisawat, T. (2006). Effect of manufacturing system constructs on pick-up and drop-off strategies of multiple-load AGVs. International journal of production research, 44(4), 653-673.
26. Liao, D. Y., & Fu, H. S. (2004, May). Dynamic OHT allocation and dispatching in large-scaled 300 mm AMHS management. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol. 4, pp. 3630-3635). IEEE.

27. Liu, H. C., & Yih, Y. (2013). A fuzzy-based approach to the liquid crystal injection scheduling problem in a TFT-LCD fab. International Journal of Production Research, 51(20), 6163-6181.
28. Luo, J., Wu, C. Q., Hong, W. C., Cheng, Y., & Xu, S. Y. (2010, June). Research on Scheduling of the RGV System Based on QPSO. In IEEE ICCA 2010 (pp. 1169-1174). IEEE.
29. Luo, S. (2019, February). RGV optimal scheduling scheme selection in multi-process scenario. In AIP Conference Proceedings (Vol. 2073, No. 1, p. 020092). AIP Publishing.
30. Mohamad, N. R., Fauadi, M. H. F. M., Zainudin, S. F., Noor, A. Z. M., Jafar, F. A., & Ali, M. M. (2018). Optimization of Material Transportation Assignment for Automated Guided Vehicle (AGV) System. International Journal of Engineering & Technology, 7(3.20), 334-338.
31. Morandin, O., Carida, V. F., Kato, E. R. R., & Fonseca, M. A. S. (2011, May). A hierarchical fuzzy rule-based building model applied to a AGV dispatching system in an FMS. In 2011 IEEE International Conference on Robotics and Automation (pp. 3764-3769). IEEE.
32. Nishi, T., & Tanaka, Y. (2012). Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(5), 1230-1243.
33. Rams, H., Schöberl, M., & Schlacher, K. (2018). Optimal Motion Planning and Energy-Based Control of a Single Mast Stacker Crane. IEEE Transactions on Control Systems Technology, 26(4), 1449-1457. 
34. Salah, B., Janeh, O., Noche, B., Bruckmann, T., & Darmoul, S. (2017). Design and simulation based validation of the control architecture of a stacker crane based on an innovative wire-driven robot. Robotics and Computer-Integrated Manufacturing, 44, 117-128.
35. Shimizu, T., Suzuki, K., Naito, S., & Ito, S. (2009, August). Two-degree-of-freedom control of a stacker crane. In 2009 ICCAS-SICE (pp. 2480-2484). IEEE.
36. Singh, N., Dave, V., Kota, J., Singh, S. K., Sakrikar, R., & Sarngadharan, P. V. (2019). Modular Mission Control for Automated Material Handling System and Performance Analysis—A Case Study. In Machines, Mechanism and Robotics (pp. 329-340). Springer, Singapore.
37. Staudecker, M., Schlacher, K., & Hansl, R. (2008). Passivity based control and time optimal trajectory planning of a single mast stacker crane. IFAC Proceedings Volumes, 41(2), 875-880.
38. Tseng, S. S., Chang, F. M., Chu, Y. S., & Chi, P. J. (2011). A GA-based method to reduce material handling: the case of TFT-LCD array Fabs in Taiwan. International Journal of Production Research, 49(22), 6691-6711.
39. Udhayakumar, P., & Kumanan, S. (2010). Task scheduling of AGV in FMS using non-traditional optimization techniques. International Journal of Simulation Modelling, 9(1), 28-39.
40. Wang, C. N., Lee, Y. H., Hsu, H. P., & Nguyen, D. H. (2016). The heuristic preemptive dispatching method for convey-based automated material handling system of 450 mm wafer fabrication. Computers & Industrial Engineering, 96, 52-60.
41. Wang, C., Fang, W., & Guan, Z. (2018). Simulation based Design for Materials Delivery System of Engineering Machinery Assembly Line. In 2018 7th International Conference on Sustainable Energy and Environment Engineering (ICSEEE 2018). Atlantis Press. 
42. Wang, X., & Lu, J. (2010, November). Research on Control Method of Neural Network for Stacker Crane. In 2010 International Conference on E-Product E-Service and E-Entertainment (pp. 1-4). IEEE.
43. Wang, Y., Man, R., Zhao, X., & Liu, H. (2020). Modeling of Parallel Movement for Deep-lane Unit Load Autonomous Shuttle and Stacker Crane Warehousing Systems. Processes, 8(1), 80.
44. Wang, Z., Zhou, Z., & Liu, J. (2019, April). Research and Analysis of Intelligent RGV Based on Dynamic Scheduling Optimization Model. In Journal of Physics: Conference Series (Vol. 1187, No. 3, p. 032025). IOP Publishing.
45. Wu, L., Zhang, G., Sun, Y., & Zhang, J. (2010, October). A fuzzy logic-based and hybrid dispatching policy for interbay material handling system in 300mm semiconductor manufacturing system. In 2010 8th International Conference on Supply Chain Management and Information (pp. 1-6). IEEE.
46. Yang, T., Kuo, Y., & Cho, C. (2007). A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem. European Journal of Operational Research, 176(3), 1859-1873.
47. Yang, T., Kuo, Y., Hsieh, C. H., & Ge, W. C. (2016). An exploratory study of virtual cell design for thin-film transistor–liquid crystal display (TFT-LCD) array manufacturing. The International Journal of Advanced Manufacturing Technology, 83(1-4), 633-644.
48. Yao, S., Jiang, Z., Li, N., Geng, N., & Liu, X. (2011). A decentralised multi-objective scheduling methodology for semiconductor manufacturing. International Journal of Production Research, 49(24), 7227-7252.

相關網站
1. 經濟日報,2020,“今年全球LCD電視面板出貨量 將降一成”,Retrieved April 16, 2020,from https://money.udn.com/money/story/5612/4461314
2. Insight,2018,“ TFT LCD Manufacturing Process ”,Retrieved April 16, 2020,from https://insightsolutionsglobal.com/tft-lcd-manufacturing-process/
3. 友達光電,2020,“顯示器解決方案- TFT-LCD製程”,Retrieved April 16, 2020,from https://www.auo.com/zh-TW/TFT-LCD_Introduction/index/TFT_LCD_Process
4. 群創光電,2020,“TFT-LCD製程介紹”,Retrieved April 16, 2020,from http://www.innolux.com/Pages/TW/Technology/Production_Process_TW.html
5. 盟立自動化,2018,“OHT-節省廠內空間的好幫手”,Retrieved April 19, 2020,from https://reurl.cc/kdlGxn
6. 村田機械,2020,“潔淨室物料搬運系統”,Retrieved April 19, 2020,from https://www.muratec.net/cfa/products/ohs.html
7. 盟立自動化,2020,“潔淨室物料搬運系統”,Retrieved April 19, 2020,from https://reurl.cc/D9A1dR
8. MDPI,2020,“Modeling of Parallel Movement for Deep-Lane Unit Load Autonomous Shuttle and Stacker Crane Warehousing Systems”,Retrieved April 19, 2020,from https://www.mdpi.com/2227-9717/8/1/80
指導教授 何應欽(Ying-Chin Ho) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明