博碩士論文 107223603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:123 、訪客IP:3.22.119.251
姓名 梁氏金媛(Thoa Thi Kim Luong)  查詢紙本館藏   畢業系所 化學學系
論文名稱 熱脫附GC/MS技術應用於工業區之有機污染物監測
(APPLICATIONS OF THERMAL DESORPTION- GC/MS TECHNIQUE FOR AMBIENT AIR MONITORING OF VOLATILE ORGANIC COMPOUNDS IN INDUSTRIAL ZONES)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了監測工業區的空氣品質,使用多床吸附管搭配常見的主動採樣方法,並透過熱脫附串聯氣相層析質譜儀 (TD-GC/MS) 進行分析。本研究目的是為實驗室所設計的熱脫附系統建立一套採集周界空氣中最大量揮發性有機化合物的方法,並達到GC/MS高品質分析性能。將填有Carbotrap, Carboxen 1000和Carboxen 1003的不鏽鋼管成功應用於小體積採樣來檢測污染物,於2019年11月5日至20日在桃園觀音工業園區附近進行採樣,並在16天中進行每日24小時線上監測,數據顯示在半夜時揮發性有機化合物具有較高的濃度。使用既定方法來鑑定各種化合物和準確地定量,化合物中包含了有害空氣污染物 (HAPs) 。本方法準確、靈敏、簡單且非常適合用於確定VOCs的來源與分佈。TD-GC / MS系統於最佳化條件下,回收率介於84.14%-105.62%之間,方法偵測限介於0.09-0.86 ppb之間,相對標準偏差 (RSD) 小於17.7%。此外,還開發了一種新技術,在污染事件發生時能觸發採樣設備,可以在長期線上監測中支持及驗證TD-GC/MS的結果。
摘要(英) In order to observe trace-level volatile organic pollutants in the air of an industrial zone, a widely used active sampling methodology based on multi-sorbent bed tubes and analysis by thermal desorption (TD) coupled with gas chromatography mass spectrometry (GC/MS) was used. This study investigated the use of a lab-designed TD method to analyze the maximum possible number of VOCs in ambient air and achieve high-quality measurements with the TD-GC/MS technique. Stainless steel (s.s.) tubes filled with Carbotrap, Carboxen 1000 and Carboxen 1003 were applied successfully for low-volume sampling (0.03-1 L) to detect target VOCs at trace levels. Continuous on-line monitoring using TD-GC/MS was undertaken over a period of 16 days from November 5th to 20th, 2019 within the Guanyin industrial complex. The hourly data showed higher concentrations of volatile organic compounds (VOCs) in midnight. A wide variety of compounds including the ones classified as the hazardous air pollutants (HAPs) were identified and accurately quantified with the established method. The method is accurate, sensitive, simple and well-suited for determining VOC distributions from various sources in an industrial zone. Optimal running conditions for the TD-GC/MS system were developed in the laboratory yielding recoveries in the range of 84.14%-105.62%, method detection limits between 0.09 and 0.86 ppb and relative standard deviation (RSD) < 17.7%.
During the on-line monitoring mode, the ion source was found to be rapidly contaminated by air matrix. Frequent cleaning of the ion source was necessary to maintain the required sensitivity of MS detection. As a result, an innovative technique of trigger-measurement was also subsequently developed by connecting an analyzer of total non-methane hydrocarbons (THC) to trigger TD-GC/MS measurements only when the THC levels surpass a threshold value of THC for which the air is deemed polluted. Since only polluted air is measured by TD-GC/MS, the ware-and-tare of the ion source in MS can be greatly reduced to prolong the service time of the ion source.
關鍵字(中) ★ 揮發性有機化合物
★ 氣相層析質譜儀
★ 熱脫附
★ 觸發
關鍵字(英) ★ VOCs
★ gas chromatography-mass spectrometry
★ thermal desorption
★ trigger
論文目次 TABLE OF CONTENTS

摘要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
CHAPTER I: INTRODUCTION 1
1-1 Research background 1
1-2 Volatile organic compound (VOCs) 2
1-2-1 Sources of VOCs 2
1-2-2 Environmental and human health effect of VOCs 3
1-2-3 VOCs monitoring 5
1-2-4 Analytical method of VOCs 5
1-3 Hazardous air pollutants (HAPs) 6
1-4 Target compounds 7
CHAPTER II: TECHNICAL REVIEW 10
2-1 Thermal desorption (TD) technique 10
2-1-1 General introduction 10
2-1-2 Advantages and limitations of TD analysis 12
2-1-3 Thermal desorption optimizing parameters 13
2-1-4 Multi-sorbent bed tube 14
2-1-5. Self-built thermal desorption device 16
2-2 Gas chromatography 20
2-3 Detectors 22
2-3-1 Flame ionization detector 22
2-3-2 Mass spectrometry detector 23
CHAPTER III: EXPERIMENT AND RESULT 26
3-1 Materials and equipment 26
3-1-1 Chemical materials 26
3-1-2 Equipment 26
3-2 Parameter optimization 27
3-2-1 Thermal desorption rates for the sorbent trap 27
3-2-4 Sorbent trap optimization 30
3-2-3 Desorption time and temperature of sorbent trap 42
3-2-4 Column selection 42
3-3 Method validation 45
3-3-1 Calibration curve 45
3-3-2 Accuracy 46
3-3-3 Precision 50
3-3-4 Method detection limit 51
3-4 Monitoring result and discussion 51
3-4-1 Online-monitoring results 51
3-4-2 Trigger measurement 67
CHAPTER IV: CONCLUSION 73
4-1 Conclusion 73
4-2 Future works 74
REFERENCES 75
參考文獻 [1] M.R. Ras-Mallorqui, R.M. Marce-Recasens, F. Borrull-Ballarin (2007) Determination of Volatile Organic Compounds in Urban and Industrial Air from Tarragona by Thermal Desorption and Gas Chromatography-Mass spectrometry. Talanta 72, 941-50.
[2] R. Montero-Montoya, R. López-Vargas, O. Arellano-Aguilar (2018) Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Annals of Global Health 84(2), 225-238.
[3] A. Ribes, G. Carrera, E. Gallego, X. Roca, M. A. Berenguer, X. Guardino (2007) Development and Validation of a Method for Air-Quality and Nuisance Odors Monitoring of Volatile Organic Compounds Using Multi-sorbent Adsorption and Gas Chromatography/Mass Spectrometry Thermal Desorption System. Journal of Chromatography A 1140, 44-55.
[4] E. Gallego, J. Folch, P. Teixidor, F.J. Roca, J.F. Perales (2019) Outdoor Air Monitoring: Performance Evaluation of a Gas Sensor to Assess Episodic Nuisance/Odorous Events Using Active Multi-sorbent Bed Tube Sampling Coupled to TD-GC/MS Analysis. Science of the Total Environment 694, 133752.
[5] A. Schieweck, J. Gunschera, D. Varol, T. Salthammer (2018) Analytical Procedure for the Determination of Very Volatile Organic Compounds (C3-C6) in Indoor Air. Analytical Bioanalytical Chemistry 410, 3171-3183.
[6] S.S.H. Ho, L. Wang, J.C. Chow, J.G. Watson, Y. Xue, Y. Huang, L. Qu, B. Li, W. Dai, L. Li, J. Cao (2018) Optimization and Evaluation of Multi-bed Adsorbent Tube Method in Collection of Volatile Organic Compounds. Atmospheric Research 202, 187-195.
[7] C.D. Jain, H.S. Gadhavi, L.K. Sahu, A. Jayaraman (2017) Volatile Organic Compounds (VOCs) in the Air, Their Importance and Measurements. Earth Science India 10(II), 1-15.
[8] World Health Organization (1989) Indoor air quality: Organic Pollutants. Environmental Technology Letters 10, 855-858.
[9] D.K. Wang, C.C. Austin (2006) Determination of Complex Mixtures of Volatile Organic Compounds in Ambient Air: An Overview. Analytical Bioanalytical Chemistry 386, 1089-98.
[10] V.T. Dieu Hien, C. Lin, V.C. Thanh, N.T. Kim Oanh, B.X. Thanh, C.E. Weng, C.S. Yuan, E.R. Rene (2019) An Overview of the Development of Vertical Sampling Technologies for Ambient Volatile Organic Compounds (VOCs). Journal of Environmental Management 247, 401-412.
[11] L.K. Sahu (2012) Volatile Organic Compounds and Their Measurements in the Troposphere. Current Science Association 102, 1645-1649.
[12] C.H. Yen, J.J. Horng (2009) Volatile Organic Compounds (VOCs) Emission Characteristics and Control Strategies for a Petrochemical Industrial Area in Middle Taiwan. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances Environmental Engineering 44, 1424-1429.
[13] O.M.S. Ismail, R.S.A. Hameed (2013) Environmental Effects of Volatile Organic Compounds on Ozone Layer. Advances in Applied Science Research 4(1), 264-268.
[14] U.S. EPA, The original list of hazardous air pollutants as follows. http://www.epa.gov/ttn/atw/188polls.html. [24 Feb. 2016]
[15] U.S. EPA Hazardous air pollutants.
https://www.epa.gov/haps/what-are-hazardous-air-pollutants. [9 Feb. 2017]
[16] 固定污染源有害空氣污染物排放標準,行政院環保署環境檢驗所,2019。
[17] P. Linstrom, Y. Mirokin, D. Tchekhovskoi (2008) NIST/EPA/NIH Mass Spectral Library (NIST 08) and NIST Mass Spectral Search Program (Version 2.0f), National Institute of Standards and Technology, U.S.A.
[18] R.A. Hallama, E. Rosenberg, M. Grasserbauer (1998) Development and Application of a Thermal Desorption Method for the Analysis of Polar Volatile Organic Compounds in Workplace Air. Journal of Chromatography A 809, 47-63.
[19] ALS Global (2016) EnviroMail™ 111 - Analysis of VOCs by Thermal Desorption Analysis, Technical E-news.
[20] C.F. Poole, Gas Chromatography, 1st Edition, Elsevier, Massachusetts, 2012.
[21] U.S. EPA, Compendium Method TO-17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling onto Sorbent Tubes, 1999.
[22] W. Elizabeth (2011) Monitoring VOCs in Air Using Sorbent Tubes Followed by Thermal Desorption-Capillary GC Analysis: Summary of Data and Practical Guidelines. Journal of the Air & Waste Management Association 47, 20-36.
[23] J.F. Pankow, W. Luo, L.M. Isabelle, D.A. Bender, R.J. Baker (1998) Determination of a Wide Range of Volatile Organic Compounds in Ambient Air Using Multisorbent Adsorption/Thermal Desorption and Gas Chromatography/Mass Spectrometry. Analytical Chemistry 70, 5213-5221.
[24] E. Woolfenden (2010) Sorbent-Based Sampling Methods for Volatile and Semi-Volatile Organic Compounds in Air. Part 2. Sorbent Selection and Other Aspects of Optimizing Air Monitoring Methods. Journal of Chromatography A 1217, 2685-2694.
[25] Markes international (2013) Thermal Desorption Technical Support. Note 28: Optimising Analytical Performance and Extending the Application Range of Thermal Desorption for Monitoring Air Indoors and Inside Vehicle Cabins.
[26] C.F. Ou-Yang, Y.X. Huang, T.J. Huang, Y.S. Chen, C.H. Wang, J.L. Wang (2016) Characterization of Thermal Desorption with the Deans-switch Technique in Gas Chromatographic Analysis of Volatile Organic Compounds. Journal of Chromatography A 1462, 107-114.
[27] J.M. Miller, Chromatography, Concepts and Contrasts, 2nd Edition, John Wiley & Sons, Inc., New Jersey, 2009.
[28] R.L. Grob, E.F. Barry, Modern Practice of Gas Chromatography, 4th Edition, John Wiley & Sons, Inc., New Jersey, 2004.
[29] J. Hampson, S. Hanssen Electrical Trade Principles, 5th Edition, Cengage Learning Australia, South Melbourne, 2020.
[30] X. Tomás, V. Fernandez-Villarrenaga, P. López-Mahía, S.M. Lorenzo (2004) Optimization of a Thermal Desorption Method for a Mixture of Volatile Organic Compounds (C1-C10): Comparison of Two Types of Cold-Traps. Analytical Letters 37, 3313-3330.
[31] R.M. Flores, E. Mertoglu (2020) Optimization of a Thermal Desorption-Gas Chromatography/Mass Spectrometry Method for Characterization of Semi-volatile Organic Compounds in High Time Resolved PM2.5 Atmospheric Pollution Research 11, 619-629.
[32] K. Gras, R. Gras, J. Luong, G. Lee, A. Vickers (2014) Agilent J&W DB-624 UI Ultra Inert GC Capillary Column for Challenging Industrial Applications, Agilent, Application Note.
[33] U.S. EPA, IRIS: Toxicological Review of Dichloromethane (Methylene Chloride) (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/635/R-10/003F, 2011.
[34] T. Godish, W.T. Davis, J.S. Fu, Air Quality, 5th Edition, CRC Press, New York, 2014.
[35] V. Tiwari, Y. Hanai, S. Masunaga (2010) Ambient Levels of Volatile Organic Compounds in the Vicinity of Petrochemical Industrial Area of Yokohama, Japan. Air Quality Atmosphere and Health 3, 65-75.
[36] E. Gallego, F.J. Roca, J.F. Perales, E. Gadea (2018) Outdoor Air 1,3-Butadiene Monitoring near a Petrochemical Industry (Tarragona Region) and in Several Catalan Urban Areas Using Active Multi-sorbent Bed Tubes and Analysis Through TD-GC/MS. Science of the Total Environment 618, 1440-1448.
[37] H. Prest (2016) Agilent Jet Clean: In-situ GC/MS Ion Source Cleaning and Conditioning, Agilent, Application Note.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2020-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明