參考文獻 |
[1]. Bertrand Berche, Ralph Kenna, and Malte Henkel, “Critical phenomena: 150 years since Cagniard de la Tour”, Rev. Bras. Ensino Fis., Vol 31, pp. 2602, 2009.
[2]. Joseph M. DeSimone and William Tumas, Green chemistry using liquid and supercritical carbon dioxide., Oxford University Press., 2003.
[3]. P. Subra and P. Jestin, “Powders elaboration in supercritical media: comparison with conventional routes”, Powder Technol., Vol 103, pp. 2-9, 1999.
[4]. Jing-fu Jia, et al., “Solubility of glycyrrhizin in supercritical carbon dioxide with and without cosolvent”, J. Chem. Eng. Data, Vol 60, pp. 1744-1749, 2015.
[5]. Ram B. Gupta and Jae-Jin Shim, Solubility in supercritical carbon dioxide., CRC Press., 2007.
[6]. Željko Knez, et al., “Are supercritical fluids solvents for the future?”, Chem. Eng. Process, Vol 141, pp. 107532, 2019.
[7]. Dorota Kostrzewa, Agnieszka Dobrzyńska-Inger, and August Turczyn, “Experimental data and modelling of the solubility of high-carotenoid paprika extract in supercritical carbon dioxide”, Molecules, Vol 24, pp. 4174, 2019.
[8]. Andrea Natolino and Carla Da Porto, “Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinetic modelling and solubility evaluation”, J. Supercrit. Fluids, Vol 151, pp. 30-39, 2019.
[9]. Luana Cristina dos Santos, et al., “Solubility of passion fruit (Passiflora edulis Sims) seed oil in supercritical CO2”, Fluid Phase Equilib., Vol 493, pp. 174-180, 2019.
[10]. Okitsugu Kajimoto, “Solvation in supercritical Fluids: its effects on energy transfer and chemical reactions”, Chem. Rev., Vol 99, pp. 355-390, 1999.
[11]. John F. Kauffman, “Peer reviewed: spectroscopy of solvent clustering in supercritical fluids”, Anal. Chem., Vol 68, pp. 248A-253A, 1996.
[12]. Wolfgang Saus, Dierk Knittel, and Eckhard Schollmeyer, “Dyeing of textiles in supercritical carbon dioxide”, Text. Res. J., Vol 63, pp. 135-142, 1993.
[13]. Bilgehan Guzel and Aydin Akgerman, “Mordant dyeing of wool by supercritical processing”, J. Supercrit. Fluids, Vol 18, pp. 247-252, 2000.
[14]. Jia-Jie Long, Yue-Qi Ma, and Jian-Ping Zhao, “Investigations on the level dyeing of fabrics in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 57, pp. 80-86, 2011.
[15]. Shunsuke Ito, et al., “Generation of microcellular polyurethane with supercritical carbon dioxide”, J. Appl. Polym. Sci., Vol 106, pp. 3581-3586, 2007.
[16]. Chenglong Dai, et al., “Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming”, Polym. Eng. Sci., Vol 53, pp. 2360-2369, 2013.
[17]. Dong-Han Won, et al., “Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process”, Int. J. Pharm., Vol 301, pp. 199-208, 2005.
[18]. Fernando Miguel, et al., “Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters”, J. Supercrit. Fluids, Vol 36, pp. 225-235, 2006.
[19]. M. Charoenchaitrakool, et al., “Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals”, Ind. Eng. Chem. Res., Vol 39, pp. 4794-4802, 2000.
[20]. M. Turk, et al., “Micronization of pharmaceutical substances by the rapid expansion of supercritical solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents”, J. Supercrit. Fluids, Vol 22, pp. 75-84, 2002.
[21]. Owen I Corrigan and Abina M Crean, “Comparative physicochemical properties of hydrocortisone–PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying”, Int. J. Pharm., Vol 245, pp. 75-82, 2002.
[22]. RV Reji, et al., “Computational fluid dynamics simulation of the supercritical carbon dioxide flow in beam dyeing”, Text. Res. J., Vol 89, pp. 2604-2615, 2019.
[23]. Huanda Zheng, et al., “An industrial scale multiple supercritical carbon dioxide apparatus and its eco-friendly dyeing production”, J. CO2 Util., Vol 16, pp. 272-281, 2016.
[24]. Sang-Do Yeo and Erdogan Kiran, “Formation of polymer particles with supercritical fluids: a review”, J. Supercrit. Fluids, Vol 34, pp. 287-308, 2005.
[25]. Yu V Tsekhanskaya, “Solubility of naphthalene in ethylene and carbon dioxide under pressure”, Russ. J. Phys. Chem., Vol 38, pp. 1173-1176, 1964.
[26]. Mark McHugh and Michael E. Paulaitis, “Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 25, pp. 326-329, 1980.
[27]. Peter A. Wells, Rodney P. Chaplin, and Neil R. Foster, “Solubility of phenylacetic acid and vanillan in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 3, pp. 8-14, 1990.
[28]. N Al-Darmaki, et al., “Solubility measurements and analysis of binary, ternary and quaternary systems of palm olein, squalene and oleic acid in supercritical carbon dioxide”, Sep. Purif. Technol., Vol 83, pp. 189-195, 2011.
[29]. Adrián Rojas-Ávila, et al., “Solubility of binary and ternary systems containing vanillin and vanillic acid in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 61, pp. 3225-3232, 2016.
[30]. Miguel G Arenas-Quevedo, et al., “Solubilities of palmitic acid + capsaicin in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 62, pp. 3861-3871, 2017.
[31]. Zhen Huang, et al., “Solubility of aspirin in supercritical carbon dioxide with and without acetone”, J. Chem. Eng. Data, Vol 49, pp. 1323-1327, 2004.
[32]. Alan Jones, Chemistry: an introduction for medical and health sciences, John Wiley & Sons, 2005.
[33]. R Bettini, et al., “Thermal and morphological characterization of micronized acetylsalicylic acid powders prepared by rapid expansion of a supercritical solution”, J. Therm. Anal. Calorim., Vol 73, pp. 487-497, 2003.
[34]. Zhen Huang, et al., “Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS)”, Powder Technol., Vol 160, pp. 127-134, 2005.
[35]. Jeremy J Harrison, et al., “On-line in-situ characterization of CO 2 RESS processes for benzoic acid, cholesterol and aspirin”, Green Chem., Vol 9, pp. 351-356, 2007.
[36]. Dariush Jafari, et al., “Gas-antisolvent (GAS) crystallization of aspirin using supercritical carbon dioxide: experimental study and characterization”, Ind. Eng. Chem. Res., Vol 54, pp. 3685-3696, 2015.
[37]. Hossein Rostamian and Mohammad Nader Lotfollahi, “Production and characterization of ultrafine aspirin particles by rapid expansion of supercritical solution with solid co-solvent (RESS-SC): expansion parameters effects”, Parti. Sci. Technol., pp. 1-9, 2019.
[38]. Chen-An Lee, Muoi Tang, and Yan-Ping Chen, “Measurement and correlation for the solubilities of cinnarizine, pentoxifylline, and piracetam in supercritical carbon dioxide”, Fluid Phase Equilib., Vol 367, pp. 182-187, 2014.
[39]. Luigi Manna and Mauro Banchero, “Solubility of tolbutamide and chlorpropamide in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 63, pp. 1745-1751, 2018.
[40]. Gholamhossein Sodeifian, et al., “Experimental data and thermodynamic modeling of solubility of Sorafenib tosylate, as an anti-cancer drug, in supercritical carbon dioxide: Evaluation of Wong-Sandler mixing rule”, J. Chem. Thermodyn., Vol 142, pp. 105998, 2020.
[41]. Mojca Škerget, Zeljko Knez, and Maša Knez-Hrnčič, “Solubility of solids in sub-and supercritical fluids: a review”, J. Chem. Eng. Data, Vol 56, pp. 694-719, 2011.
[42]. Željko Knez, Darija Cör, and Maša Knez Hrnčič, “Solubility of solids in sub-and supercritical fluids: a review 2010-2017”, J. Chem. Eng. Data, Vol 63, pp. 860-884, 2017.
[43]. Leonid Poretsky, Principles of diabetes mellitus, Vol.21. Springer, 2010.
[44]. Brian C Leutholtz and Ignacio Ripoll, Exercise and disease management, CRC press, 2011.
[45]. Siang Yong Tan and Jason Merchant, “Frederick Banting (1891 - 1941): Discoverer of insulin”, Singapore Med. J., Vol 58, pp. 2, 2017.
[46]. Harold Percival Himsworth, “Diabetes mellitus: its differentiation into insolin-sensitive and insulin-insensitive types”, Lancet, Vol 230, pp. 127-130, 1936.
[47]. Appian Subramoniam, Anti-diabetes mellitus plants: active principles, mechanisms of action and sustainable utilization, CRC Press, 2016.
[48]. Organization World Health, Global report on diabetes, World Health Organization, Geneva, 2016.
[49]. NH1 Cho, et al., “IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045”, Diabetes Res. Clin. Pract., Vol 138, pp. 271-281, 2018.
[50]. Awad M Ahmed, “History of diabetes mellitus”, Saudi Med. J., Vol 23, pp. 373-378, 2002.
[51]. Ralph A DeFronzo, et al., International textbook of diabetes mellitus, 2 volume set, Vol.1. John Wiley & Sons, 2015.
[52]. J.K. Davidson, Clinical diabetes mellitus: a problem-oriented approach, Si P, 2000.
[53]. M. A. Ellraheim, et al., “Angiotensin inhibitors potentiate the hypoglycemic and antioxidant effects of gliclazide in rats”, Int. J. Pharm. Sci. Rev. Res., Vol 31, pp. 75-80, 2015.
[54]. Elisabeth R Mathiesen, et al., “Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria”, Br. Med. J., Vol 303, pp. 81-87, 1991.
[55]. Steven E Kahn, Mark E Cooper, and Stefano Del Prato, “Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future”, Lancet, Vol 383, pp. 1068-1083, 2014.
[56]. Yue Zhao, et al., “Erosion induced controllable release of gliclazide encapsulated inside degradable polymeric particles”, Macromol. Biosci., Vol 4, pp. 308-313, 2004.
[57]. Lauretta Maggi, et al., “Improvement of the dissolution behavior of gliclazide, a slightly soluble drug, using solid dispersions”, J. Drug Deliv. Sci. Technol., Vol 26, pp. 17-23, 2015.
[58]. Sharif Md Abuzar, et al., “Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process”, Int. J. Pharm., Vol 538, pp. 1-13, 2018.
[59]. Harold Kadin, Captopril, Analytical Profiles of Drug Substances, K. Florey, Editor. 1982, Academic Press. p. 79-137.
[60]. Luis Padrela, et al., “Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process”, J. Supercrit. Fluids, Vol 53, pp. 156-164, 2010.
[61]. Abhijat Shikhar, et al., “Formulation development of carbamazepine-nicotinamide co-crystals complexed with γ-cyclodextrin using supercritical fluid process”, J. Supercrit. Fluids, Vol 55, pp. 1070-1078, 2011.
[62]. Shogo Suzuki, et al. “Solubility measurement in supercritical CO2 with high pressure UV/VIS absorption spectroscopy”, The Society of Chemical Engineers, Japan, 2004.
[63]. Gholamhossein Sodeifian, et al., “Determination of the solubility of the repaglinide drug in supercritical carbon dioxide: experimental data and thermodynamic modeling”, J. Chem. Eng. Data, Vol 64, pp. 5338-5348, 2019.
[64]. 陳志宗,「甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測」,國立中央大學,碩士論文,2019。
[65]. Arpita Roy, et al., “5-Methyl salicylic acid-induced thermo responsive reversible transition in surface active ionic liquid assemblies: a spectroscopic approach”, Langmuir, Vol 32, pp. 7127-7137, 2016.
[66]. Xiang Hao, et al., “Thermal-responsive self-healing hydrogel based on hydrophobically modified chitosan and vesicle”, Colloid. Polym. Sci., Vol 291, pp. 1749-1758, 2013.
[67]. Fuyuan Ding, et al., “Recent advances in chitosan-based self-healing materials”, Res. Chem. Intermed., Vol 44, pp. 4827-4840, 2018.
[68]. Roland Span and Wolfgang Wagner, “A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa”, J. Phys. Chem. Ref. Data, Vol 25, pp. 1509-1596, 1996.
[69]. JCGM 100:2008, Evaluation of measurement data - guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections), 1 ed., Joint Committee for Guides in Metrology, 2008.
[70]. Barry N. Taylor and Chris E. Kuyatt, Guidelines for evaluating and expressing the uncertainty of NIST measurement results, U.S. Government Printing Office, Washington, DC, 1994.
[71]. S L R Ellison and A Williams, Eurachem/CITAC guide: quantifying uncertainty in analytical measurement, 3 ed., 2012.
[72]. J. Kragten, “Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique”, Analyst, Vol 119, pp. 2161-2165, 1994.
[73]. Thomas W Vetter. Quantifying measurement uncertainty in analytical chemistry-A simplified practical approach. in Measurement Science Conference. 2001. Anaheim, CA: National Institute of Standards and Technology (NIST).
[74]. Josef Chrastil, “Solubility of solids and liquids in supercritical gases”, J. Phys. Chem., Vol 86, pp. 3016-3021, 1982.
[75]. Janette Méndez-Santiago and Amyn S. Teja, “The solubility of solids in supercritical fluids”, Fluid Phase Equilib., Vol 158-160, pp. 501-510, 1999.
[76]. Aicha Belghait, et al., “Semi-empirical correlation of solid solute solubility in supercritical carbon dioxide: comparative study and proposition of a novel density-based model”, C. R. Chim., Vol 21, pp. 494-513, 2018.
[77]. Cherif Si-Moussa, et al., “Novel density-based model for the correlation of solid drugs solubility in supercritical carbon dioxide”, C. R. Chim., Vol 20, pp. 559-572, 2017.
[78]. M. D. Gordillo, et al., “Solubility of the antibiotic penicillin G in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 15, pp. 183-190, 1999.
[79]. Abolghasem Jouyban, Hak-Kim Chan, and Neil R. Foster, “Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expressions”, J. Supercrit. Fluids, Vol 24, pp. 19-35, 2002.
[80]. Xiaoqiang Bian, Zhimin Du, and Yong Tang, “An improved density-based model for the solubility of some compounds in supercritical carbon dioxide”, Thermochim. Acta, Vol 519, pp. 16-21, 2011.
[81]. Xiao-Qiang Bian, et al., “A combined model for the solubility of different compounds in supercritical carbon dioxide”, Chem. Eng. Res. Des., Vol 104, pp. 416-428, 2015.
[82]. Xiao-Qiang Bian, et al., “A five-parameter empirical model for correlating the solubility of solid compounds in supercritical carbon dioxide”, Fluid Phase Equilib., Vol 411, pp. 74-80, 2016.
[83]. Jeong Won Kang, et al., “Quality assessment algorithm for vapor-liquid equilibrium data”, J. Chem. Eng. Data, Vol 55, pp. 3631-3640, 2010.
[84]. David J. Miller, et al., “Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide from 313 K to 523 K and pressures from 100 bar to 450 bar”, J. Chem. Eng. Data, Vol 41, pp. 779-786, 1996.
[85]. Keith D. Bartle, Anthony A. Clifford, and Saad A. Jafar, “Measurement of solubility in supercritical fluids using chromatographic retention: the solubility of fluorene, phenanthrene, and pyrene in carbon dioxide”, J. Chem. Eng. Data, Vol 35, pp. 355-360, 1990.
[86]. Keith P. Johnston, David H. Ziger, and Charles A. Eckert, “Solubilities of hydrocarbon solids in supercritical fluids. the augmented van der Waals treatment”, Ind. Eng. Chem. Fundam., Vol 21, pp. 191-197, 1982.
[87]. Enping Yu, et al., “Solubilities of polychlorinated biphenyls in supercritical carbon dioxide”, Ind. Eng. Chem. Res., Vol 34, pp. 340-346, 1995.
[88]. Qingguo Li, et al., “Solubility of azoxystrobin and benflumetol in compressed CO2-measured by the static precise mass measuring method”, J. Chem. Eng. Data, Vol 64, pp. 9-15, 2019.
[89]. K. Ongkasin, et al., “Solubility of cefuroxime axetil in supercritical CO2: measurement and modeling”, J. Supercrit. Fluids, Vol 152, pp. 104498, 2019.
[90]. Ben Li, Wei Guo, and Edward D. Ramsey, “Solubility measurements of chloramphenicol in supercritical fluid CO2 using static solubility apparatus interfaced with online supercritical fluid chromatography”, J. Chem. Eng. Data, Vol 65, pp. 153-159, 2020.
[91]. Raphaela G. Bitencourt, et al., “High pressure phase equilibrium of the crude green coffee oil – CO2 – ethanol system and the oil bioactive compounds”, J. Supercrit. Fluids, Vol 133, pp. 49-57, 2018.
[92]. Sivamohan N. Reddy and Giridhar Madras, “Mixture solubilities of nitrobenzoic acid isomers in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 70, pp. 66-74, 2012.
[93]. Jing-Wei Chen and Fuan-Nan Tsai, “Solubilities of methoxybenzoic acid isomers in supercritical carbon dioxide”, Fluid Phase Equilib., Vol 107, pp. 189-200, 1995.
[94]. Hongju Chang and Dennis G. Morrell, “Solubilities of methoxy-1-tetralone and methyl nitrobenzoate isomers and their mixtures in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 30, pp. 74-78, 1985. |