博碩士論文 107324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:134 、訪客IP:3.22.248.208
姓名 謝汶蓁(Wen-Chen Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Antibiotics Recycling of Tetracycline Hydrochloride from Capsule Waste)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 根據統計,每年台灣丟棄的廢棄藥物至少達193噸以上,而抗生素在其中占了相當大的比例。然而,四環素是世界上第二大類抗生素,也是最常見的獸醫用藥。因此,本研究的目的是從廢棄抗生素膠囊中回收其活性藥物成分(API)鹽酸四環素(TCH)作為案例研究。此研究包括兩個部分:(1)根據國際醫藥法規協和會(ICH)所訂定人類用藥之製程殘留溶劑標準,選擇TCH再結晶之溶劑以及(2)將第一部分的結果延伸至500 ml的攪拌槽規模並混合KINGDOM®和NOVABIOTIC®兩種市售的抗生素膠囊,從其中回收鹽酸四環素。本研究將探討混合、老化時間、老化溫度、反溶劑添加速率以及攪拌速率對製程的影響。在25℃下利用甲醇以300 rpm攪拌1.5 小時固液萃取其中的鹽酸四環素,經0.22 μm聚偏二氟乙烯(PVDF)膜過濾未溶解之物質。再以9.9 毫升/分鐘的速率添加甲基叔丁基醚(MTBE)作為反溶劑,添加後以900 rpm攪拌老化2小時,利用1μm棉絨纖維濾紙過濾蒐集固體。鹽酸四環素的回收率達到73.1%且HPLC純度測定達到99.2%。藥物回收的技術已屈指可數,然而相比之下利用結晶製程回收藥物更是乏人問津。此研究不僅是一個新穎的方法,更具其他優點,例如製程操作簡單且快速也具再現性。最重要的是,其中的活性藥物成分(API)能夠直接被回收而非分解或轉換成其他物質。
摘要(英) According to the statistics, at least 193 tons of drugs are thrown away in Taiwan every year and antibiotics make up a large proportion. Among them, tetracycline is the second largest class of antibiotics in the world, and the most common veterinary drug. For this reason, the aim of this research is to recycle tetracycline hydrochloride (TCH), one of the antibiotics, from capsule wastes as a case study. Experiments include two parts: (1) solvent screening and selection for recrystallization of purchased TCH according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guideline Q3C (R6) on impurities: Guideline for residual solvents, and (2) the results based on the first part were extended to recycle TCH from different brands of capsules (KINGDOM® and NOVABIOTIC®) in a 500 ml stirred tank scale. The effects of mixing, aging time, aging temperature, addition rates, and agitation rates on TCH recycling are studied. Solid-liquid extraction was applied to the capsules in methanol with an agitation rate of 300 rpm for 1.5 hours, and filtration by a 0.22 μm PVDF filter membrane. The addition of antisolvent, MTBE with an addition rate of 9.9 ml/min, with an agitation rate of 900 rpm, and aged for 2 hours at 25℃, then filtered through a 1μm alpha cotton cellulose filter paper to collect the solids. The recovery rates of TCH achieved 73.1%, and the HPLC assay achieved 99.2%. A novel, fast and simple operation, and reproducible recycling processes were carried out in this research. Most importantly, the original pure form of the active pharmaceutical ingredient (API) can be recovered directly instead of decomposing or transforming into some other components.
關鍵字(中) ★ 藥物回收
★ 抗生素
★ 結晶
關鍵字(英) ★ Drug recycling
★ Antibiotic
★ Crystallization
論文目次 摘要 I
Abstract II
Acknowledgments IV
Table of Contents VI
List of Figures X
List of Table XIX
List of Scheme XXII
Chapter 1. Executive Summary 1
1.1 Status of Unused Drugs 1
1.1.1 Situation of Drug Wastes 1
1.1.2 Pollution of Drug Waste 3
1.1.3 Recycling unused drugs 4
1.2 Antibiotics 7
1.2.1 Introduction of antibiotics 7
1.2.2 Introduction of tetracycline hydrochloride 11
1.3 Comparison of Tetracycline Removal 15
1.3.1 Adsorption 18
1.3.2 Photodegradation 24
1.3.3 Membrane Processes 28
1.3.4 Combined Processes 32
1.3.5 Other Processes 36
1.4 Conceptual Framework 40
1.5 References 43
Chapter 2. Materials and Methods 54
2.1 Materials 54
2.1.1 Chemicals 54
2.1.2 Solvents 56
2.2 Experimental Framework 58
2.2.1 Concept of Experiment 58
2.2.2 Solvent Selection 59
2.2.3 Single Crystal Growth 62
2.3 Purchased TCH Recrystallization 63
2.3.1 Mixing and Aging Time Effect 64
2.3.2 Antisolvent Effect 65
2.3.3 Solvent Ratio Effect 66
2.4 Recycled TCH from Capsules 67
2.4.1 Addition Rate Effect 67
2.5 Scale Up recycling TCH from capsules 68
2.5.1 Aging Time Effect 69
2.5.2 Aging Temperature Effect 70
2.5.3 Agitation Rate Effect 71
2.5.4 Addition Rate Effect 72
2.6 Analytical Instruments 73
2.6.1 Fourier Transform Infrared (FT-IR) Spectroscopy 73
2.6.2 Powder X-ray Diffraction (PXRD) 74
2.6.3 Polarized Optical Microscopy (POM) 75
2.6.4 Single Crystal X-ray Diffractometer (SXD) 76
2.6.5 High Performance Liquid Chromatography (HPLC) 77
2.7 References 80
Chapter 3. Results and Discussion 81
3.1 Solvent Selection 81
3.2 Characterization of TCH 85
3.2.1 FTIR Spectrum 85
3.2.2 Powder X-ray Diffraction & Single Crystal X-ray Diffraction 86
3.3 Purchased TCH Recrystallization 89
3.3.1 Mixing and Aging Time Effect 89
3.3.2 Antisolvent Effect 97
3.3.3 Solvent Ratio Effect 98
3.4 Recycled TCH from Capsules in Laboratory Scale 100
3.4.1 Antisolvent Addition Rate Effect 100
3.5 Scale Up Recycling TCH from Capsules 106
3.5.1 Aging Time Effect 106
3.5.2 Aging Temperature Effect 110
3.5.3 Agitation Rate Effect 112
3.5.4 Addition Rate Effect 116
3.6 References 121
Chapter 4. Conclusions and Future Works 123
4.1 Conclusions 123
4.2 Future Works 125
4.3 References 134
參考文獻 Chapter 1.
1 一年丟棄193公噸藥品 部分負擔擬調. Liberty Times Net.
https://news.ltn.com.tw/news/focus/paper/1140821 (accessed October 04, 2017).
2 Huang, H.; Li, Y. Y.; Huang, B.; Pi, X. An Optimization Model for Expired Drug Recycling Logistics Networks and Government Subsidy Policy Design Based on Tri-level Programming. Int. J. Environ. Res. Public Health. 2015, 12(7), 7738-7751.
3 Toh, M. R.; Chew, L. Turning waste medicines to cost savings: A pilot study on the feasibility of medication recycling as a solution to drug wastage. Palliat Med. 2016, 31(1), 35-41.
4 藥物過期該怎辦?需要回收嗎?專家教你「最正確處理法」!亂丟馬桶、水槽,後果超嚴重The Storm Media.
https://www.storm.mg/lifestyle/1038123 (accessed March 12, 2019).
5 Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Herbert, T. B. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environ Sci Technol. 2002, 36(6), 1202-1211.
6 Lin, Y. C. A.; Yu, T. H.; Lateef, S. K. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. J. Hazard. Mater. 2009, 167(1-3), 1163-1169.
7 Karthikeyan, K. G.; Meyer, M. T. Occurrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA. Sci. Total Environ. 2006, 361(1-3), 196-207.
8 感冒藥水別倒水槽!這5類藥物不回收 嚴重會導致基因突變
https://heho.com.tw/archives/53182https://heho.com.tw/archives/53182 (accessed July 15,
2019).
9 Shuster, M. Biology for a changing world, with physiology. 2nd ed.; W.H. Freeman, 2014.
10 Antineoplastic (Chemotherapy) Drugs.
https://www.cdc.gov/niosh/topics/repro/antineoplastic.html (accessed October 28, 2019).
11 Immunosuppressive drug,
https://en.wikipedia.org/wiki/Immunosuppressive_drug. (accessed May 30, 2020).
12 Gelband, H.; Miller-Petrie, M.; Pant, S.; Gandra, A.; Levinson, J.’ Barter, D.; White, A.; Laxminaratan. The State of the World’s Antibiotics, 2015.; Center for Disease Dynamics, Economics & Policy, CDDEP: Washington, D.C. 2015.
13 Lokesh, B.; Stefan, S.; Sheehan, C.; William, R. Excipient development for pharmaceutical, biotechnology, and drug delivery systems. Informa Healthcare, 2006.
14 「藥」命的水?天下雜誌408期.
https://www.cw.com.tw/article/article.action?id=5002219 (accessed April 13, 2011).
15 Giger, W.; Alder, A. C.; Golet, E. M.; Kohler, H. P. E.; McArdell, C. S.; Molnar, E.; Hansrudolf, S.; Marc, J. F. S. Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. Chimia. 2003, 57(9), 485–491.
16 廢棄藥隨意丟 大漢溪抗生素濃度超標7500. Environmental Information Center. https://e-info.org.tw/node/56521 (accessed June 16, 2010).
17 Gu, C.; Karthikeyan, K. G. Interaction of Tetracycline with Aluminum and Iron Hydrous Oxides. Environ. Sci. Technol., 2005, 39(8), 2660-2667.
18 Schwalbe, R.; Steele-Moore, L.; Goodwin, A. C. Antimicrobial Susceptibility Testing Protocols, 1st ed.; Boca Raton, Taylor & Frances group, 2007.
19 Antibiotics Guide.
https://www.drugs.com/article/antibiotics.html (accessed June 11, 2019).
20 Jeong, J. S.; Song, W. H.; Cooper, W. J.; Jung, J. Y.; Greaves, J. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere. 2010, 78(5), 533-540.
21 Borghi, A. A.; Palma, M. S. A. Tetracycline: production, waste treatment and environmental impact assessment. Braz. J. Pharm. Sci. 2014, 50(1), 25-40.
22 Zhang, D. Y.; Yin, J.; Zhao, J. Q.; Zhu, H.; Wang, C. Y. Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon. J. Environ. Chem. Eng. 2015, 3(3), 1504-1512.
23 Agwuh, K. N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob. Chemother. 2006, 58(2), 256-265.
24 藥品使用量分析.
https://www.nhi.gov.tw/Content_List.aspx?n=5AA7CAFFF61CB16D&topn=5FE8C9FEA
E863B46 (accessed October 16, 2019).
25 Kulshrestha, P.; Giese, R. F.; Aga, D. S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ. Sci. Technol. 2004, 38(15), 4097-4105.
26 Figueroa, R. A.; Leonard, A.; Mackay, A. A. Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol. 2004, 38(2), 476-483.
27 Jacobsen, A. M.; Halling-Sorensen, B.; Ingerslev, F.; Hansen, S. H. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurized liquid chromatography-tandem mass spectrometry. J. Chromatogr., A, 2004, 1038(1-2), 157-170.
28 Lindsey, M. E.; Meyer, M.; Thurman, E. M. Analysis of trace levels of sulfonamide and tetracycline antimicrobials, in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal. Chem. 2001, 73(19), 4640-4646.
29 Thurman, E. M.; Hostetler, K. A. Analysis of tetracycline and sulfamethazine antibiotics in ground water and animal-feedlot wastewater by high-performance liquid chromatography/mass spectrometry using positive-ion electrospray.
http://water.usgs.gov/owq/AFO/proceedings/afo/html/thurman.html. (accessed January 19,
2005).
30 Danner, M. C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793-804.
31 Rivas, J.; Encinas, Á.; Beltrán, F.; Graham, N. Application of advanced oxidation processes to doxycycline and norfloxacin removal from water. J. Environ. Sci. Health A. 2011, 46(9), 944-951.
32 Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. T.; Barber, L. B. Buxton, H. T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000:  A National Reconnaissance. Environ. Sci. Technol. 2002, 36(6), 1202-1211.
33 Mulroy, A. Monitoring and analysis of water and wastes. Water Environ. Technol. 2001, 13(2), 32-36.
34 合理使用抗生素 避免產生抗藥性.
https://www.cdc.gov.tw/Category/ListContent/3263Cslsb96HH82yOxT8A?uaid=GFmwlPg
HN3cuTZEo9csPiw (assessed February 16, 2007).
35 Tetracycline hydrochloride.
https://www.sigmaaldrich.com/catalog/product/sial/t8032?lang=en®ion=TW
36 Myers, A. G.; Brubaker, J. D.; Sun, C. X.; Wang, Q. Synthesis of tetracyclines and analogue thereof. U. S. Patent No. 8,486,921 B2, 2013.
37 Fawzy, M. E.; Abdelfattah, I.; Abuarab, M. E.; Mostafa, E.; Aboelghait, K. M.; El-Awady, M. H. Sustainable Approach for Pharmaceutical Wastewater Treatment and Reuse: Case Study. J. Environ. Sci. Technol. 2018, 11(4), 209-219.
38 Guo, Y.; Qi, P. S.; Liu, Y. Z. A Review on Advanced Treatment of Pharmaceutical Wastewater. IOP Conf Ser Earth Environ Sci. 2017, 63, 1-7.
39 Bautitz, I. R.; Nogueira, R. Degradation of Tetracycline by Photo-Fenton Process-Solar Irradiation and Matrix Effects. J. Photochem. Photobiol. A. 2007, 187(1), 33-39.
40 Babu, S. G.; Ashokkumar, M.; Neppolian, B. The Role of Ultrasound on Advanced Oxidation Processes. Top Curr Chem (Z). 2016, 374(5),75.
41 Khan, M. H.; Hyokwan, B.; Jinyoung, J. Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. J. Hazard. Mater. 2010, 181(1-3), 659-665.
42 Dodd, M. C.; Buffle, M. O.; Gunten, U. V. Oxidation of Antibacterial Molecules by Aqueous Ozone: Moiety-Specific Reaction Kinetics and Application to Ozone-Based Wastewater Treatment. Environ. Sci. Technol. 2006, 40(6), 1969-1977.
43 Koppenol, W. H. The centennial of the Fenton reaction. Free Radic. Biol. Med. 1993, 15(6), 645-651.
44 Dai, Y. J.; Liu, M.; Li, J. J.; Yang, S. S.; Sun, Y.; Sun Q.; Wang, W. S. Lu, L.; Zhang, K.X.; Xu, J. Y.; Zheng, W. L.; Hu, Z. Y.; Yang, Y. H.; Gao, Y. W.; Liu, Z. H. A review on pollution situation and treatment methods of tetracycline in groundwater. Sep. Sci. Technol. 2019, 55(4), 1-17.
45 Microfiltration.
https://en.wikipedia.org/wiki/Microfiltration (accessed June 16, 2020).
46 Ultrafiltration.
https://en.wikipedia.org/wiki/Ultrafiltration (accessed April 29, 2020).
47 Reverse osmosis.
https://en.wikipedia.org/wiki/Reverse_osmosis (accessed June 30, 2020).
48 Electrodeionization.
https://en.wikipedia.org/wiki/Electrodeionization (accessed May 20, 2020).
49 Lu, T. T.; Xu, X. X.; Liu, X. X.; Sun, T. Super hydrophilic PVDF based composite membrane for efficient separation of tetracycline. Chem. Eng. J. 2017, 308, 151-159.
50 Liu, H. J.; Yang, Y.; Kang, J.; Fan,M. H.; Qu, J. H. Removal of tetracycline from water by Fe-Mn binary oxide. J. Environ. Sci. 2012, 24(2), 242-247.
51 Zhao, B.; Ji, Y. X.; Wang, F. Lei, G.; H.; Gu, Z. Z. Adsorption of tetracycline onto alumina: experimental research and molecular dynamics simulation. Desalination Water Treat. 2015, 57(11), 1-9.
52 Lu, J. B.; Xu, K.; Li, W. L.; Hao, D. M.; Qiao, L. M. Removal of tetracycline antibiotics from aqueous solutions using easily regenerable pumice: batch and column study. Water Qual. Res. J. Canada. 2018, 53(3), 143-155.
53 Zeng, Z. T.; Ye, S. J.; Wu, H. P.; Xiao, R.; Zeng, G. M.; Liang, J.; Zhang, C.; Yu, J. F.; Fang, Y. L.; Song, B. Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci. Total Environ. 2019, 648, 206-217.
54 Jing, X. R.; Wang, Y. Y.; Liu, W. J.; Wang, Y. K.; Jiang, H. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem. Eng. J. 2014, 248, 168-174.
55 Guan, W. S.; Wang, X.; Pan, J. M.; Lei, J. R.; Zhou, Y. Lu, C. C.; Yan, Y. S. Synthesis of Magnetic Halloysite Composites for the Effective Removal of Tetracycline Hydrochloride from Aqueous Solutions. Adsorp. Sci. Technol. 2012, 30(7), 579-592.
56 Jorge L.; Gardea, T.; Michelle, K.; Becker, H.; James M. H.; Dennis, W. D. Effect of Chemical Modification of Algal Carboxyl Groups on Metal Ion Binding. Environ. Sci. Technol. 1990, 24(9), 1372-1378.
57 Li, K.; Ji, F.; Liu, Y. L.; Tong, Z. L.; Zhan, X. M.; Hu, Z. H. Adsorption removal of tetracycline from aqueous solution by anaerobic granular sludge: equilibrium and kinetic studies. Water Sci. Technol. 2013, 67(7), 1490-1496.
58 Goh, K.K.; Lim, T.T.; Gong, Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2018, 42(6-7), 1343-1368.
59 Xu, Z. Y.; Fan, J.; Zheng, S. R.; Ma, F. F.; Yin, D. Q. On the Adsorption of Tetracycline by Calcined Magnesium-Aluminum Hydrotalcites. J. Environ. Qual. 2009, 38(3), 1302-1310.
60 Wang, H.; Wu, Y.; Feng, M. B.; Tu, W. G.; Xiao, T.; Xiong, T.; Ang, H. X.; Yuan, X. Z.; Chew, J. W. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 2018, 144, 215-225.
61 Reyes, C.; Fernándex, J.; Freer, J.; Mondaca, M. A.; Zaror, C.; Malato, S.; Mansilla, H. D. Degradation and inactivation of tetracycline by TiO2 photocatalysis. J. Photochem. Photobiol. A. 2006, 184(1-2):141-146.
62 Hu, J. Y.; Yu, C. K.; Zhu, C. Y.; Hu, S. J.; Wang, Y.; Fu, N. Q.; Zeng, L. X.; Zhu, M. S. 2D/1D heterostructure of g-C3N4 nanosheets/CdS nanowires as effective photo-activated support for photoelectrocatalytic oxidation of methanol. Catal. Today, 2018, 315, 36-45.
63 Dehghan, A.; Dehghani, M. H.; Nabizadeh, R.; Ramezanian, N.; Alimohammadi, M.; Najafpoor, A. A. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride from aqueous solutions using 3D hierarchical mesoporous BiOI: synthesis and characterization, process optimization, adsorption and degradation modeling. Chem. Eng. Res. Des. 2018, 129, 217-230.
64 Wen, X. J.; Niu, C. G.; Zhang, L.; Liang, C.; Zeng, G. M. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight. Appl. Catal. B, 2018, 221, 701-714.
65 Wu, X. L.; Fu, M.; Lu, P.; Ren, Q. Y.; Wang, C. Unique electronic structure of Mg/O co-decorated amorphous carbon nitride enhances the photocatalytic tetracycline hydrochloride degradation. Chinese J. Catal. 2019, 40(5), 776-785.
66 Liu, M. K.; Liu, Y. Y.; Bao, D. D.; Zhu, G.; Yang, G. H.; Geng, J. F.; Li, H. T. Effective Removal of Tetracycline Antibiotics from Water using Hybrid Carbon Membranes. Sci Rep. 2017, 7(1), 43717.
67 Li, W.; Li, T. T.; Li, G. T.; An, L. B.; Li, F.; Zhang, Z. M. Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism. Carbohydr. Polym. 2017, 168, 153-162.
68 Košutić, K.; Dolar, D.; Ašperger, D.; Kunst, B. Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 2007, 53(3), 244-249.
69 Kimura, K.; Amy, G.; Drewes, J. E.; Heberer, T.; Kim, T. U.; Watanabe, Y. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 2003, 227(1-2), 113-121.
70 Gralak, B.; Enoch, S.; Tayeb, G. Anomalous refractive properties of photonic crystals. J Opt Soc Am A Opt Image Sci Vis. 2000, 17(6), 1012.
71 Diclofenac epolamine Monograph for Professionals. Drugs.com. AHFS. (accessed December 22, 2018).
72 Williams, D. Treatment of Epilepsy with Mysoline. Proc R Soc Med. 1956, 49(8), 589-591.
73 Nghiem, L. D.; Schafer, A. I.; Elimelech, M. Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms, Environ. Sci. Technol. 2004, 38(6), 1888-1896.
74 Ai, L.; Jiang, J. Removal of Methylene Blue from Aqueous Solution with Self-Assembled Cylindrical Graphene–Carbon Nanotube Hybrid. Chem. Eng. J. 2012, 192, 156-163.
75 Hao, R.; Xiao, X.; Zuo, X. X.; Nan, J. M.; Zhang, W. D. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J. Hazard. Mater. 2012, 209-210, 137-145.
76 Pang, Y. X.; Kong, L. J; Lei, H. Y.; Chen, D. Y.; Yuvaraja, G. Combined microwave-induced and photocatalytic oxidation using zinc ferrite catalyst for efficient degradation of tetracycline hydrochloride in aqueous solution. J. Taiwan. Inst. Chem. Eng. 2018, 93, 397-404.
77 Leong, S. W.; Li, D.; Hapgood, K.; Zhang, X. W.; Wang, H. T. Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Appl. Catal. B. 2016, 198, 224-233.
78 Zhou, D.; Xu, Z.; Dong, S.; Huo, M.; Dong, S.; Tian, X.; Cui, B.; Xiong, H.; Li, T.; Ma, D.; Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light. Environ. Sci. Technol. 2015, 49(13), 7776-7783.
79 Ma, Y.; Xiong, H. F.; Zhao, Z. Q.; Yu, Y.; Zhou, D. D.; Dong, S. S.; Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor. Chem. Eng. J. 2018, 351, 967-975.
80 Xiong, H. F.; Zou, D. L; Zhou, D. D.; Wang, S. S.; Wang, J. W.; Rittmann, B. E. Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB). Chem. Eng. J. 2017, 316, 7-14.
81 Kıvrak, E. G.; Yurt, K. K.; Kaplan, A. A.; Alkan, I.; Altun, G. Effects of electromagnetic fields exposure on the antioxidant defense system. J. Microsc. 2017, 5(4), 167-176.
82 Jiang, X.; Guoa, Y. H.; Zhang, L. B.; Jiang, W. J.; Xie, R. Z. Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon. Chem. Eng. J. 2018, 341, 392-401.
83 Guo, D. G.; Ni, L.; Wang, L.; Shao, L. Separation and determination of tetracycline hydrochloride in real water samples using binary small molecule alcohol‐salt aqueous two‐phase system coupled with high‐performance liquid chromatography. Chirality. 2019, 31(4), 1-11.
84 Yang, K. L.; Yue, Q. Y.; Kong, J. J.; Zhao, P.; Gao, Y.; Fu, K. F.; Gao, B. Y. Microbial diversity in combined UAF–UBAF system with novel sludge and coal cinder ceramic fillers for tetracycline wastewater treatment. Chem. Eng. J. 2016. 285, 319-330.
85 Lee, T.; Yeh, K. L.; You, J. X.; Fan, Y. C.; Cheng, Y. S.; Pratama, D. E. Reproducible Crystallization of Sodium Dodecyl Sulfate·1/8 Hydrate by Evaporation, Antisolvent Addition, and Cooling. ACS Omega. 2020, 5(2), 1068-1079.
86 Giulietti, M.; Bernardo, A. Crystallization – Science and Technology, Crystallization by Antisolvent Addition and Cooling.; InTech, 2012.

Chapter 2.
1 景德鹽酸四環素膠囊Tetracycline HCl Capsules "KINGDOM". https://www.kingnet.com.tw/knNew/medicine/merchandise_single.html?license_id=%E5%85%A7%E8%A1%9B%E8%97%A5%E8%A3%BD%E5%AD%97%E7%AC%AC001542%E8%99%9F (acessed April 9, 2018)
2 Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen: By initial solvent screening. Pharm. Technol. 2006, 30(10), 72-92.
3 ICH guideline Q3C (R6) on impurities: guideline for residual solvents. European Medicines Agency, Science Medicines Health. (accessed August 9, 2019).
4 Sheldrick, G. M. SHELXL-2017, Program for Solution of Crystal Structures, University of Gottingen, Germany, 2017.
5 Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.
6 https://www.bruker.com/cn/products/x-ray-diffraction-and-elemental-analysis/single-crystal-x-ray-diffraction/d8-quest-eco.html.
7 United States Pharmacopeia and National Formulary (USP 35-NF 30). Tetracycline Hydrochloride. http://usp35.infostar.com.cn/uspnf/pub/data/v35300/usp35nf30s0_m81810.html#usp35nf30s0_m81810

Chapter 3.
1 Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen: By initial solvent screening. Pharm. Technol. 2006, 30(10), 72-92.
2 Benzyl alcohol.
https://en.wikipedia.org/wiki/Benzyl_alcohol (accessed June 22, 2020).
3 Dimethylformamide.
https://en.wikipedia.org/wiki/Dimethylformamide (accessed June 2, 2020).
4 Dimethyl sulfoxide.
https://en.wikipedia.org/wiki/Dimethyl_sulfoxide (accessed May 15, 2020).
5 ICH guideline Q3C (R6) on impurities: guideline for residual solvents. European Medicines Agency, Science Medicines Health. (accessed August 9, 2019)
6 National Center for Biotechnology Information. PubChem Database. Tetracycline hydrochloride.
https://pubchem.ncbi.nlm.nih.gov/compound/Tetracycline-hydrochloride (accessed June 30,
2020).
7 IR Spectroscopy Tutorial: Amines.
http://www.orgchemboulder.com/Spectroscopy/irtutor/aminesir.shtml
8 IR Spectrum Table & Chart.
https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html
9 Clegg, W.; Teat, S. J. Tetracycline Hydrochloride: A Synchrotron Microcrystal Study. Acta. Crystallogr. C. 2000, 11(11), 1343-1345.
10 United States Pharmacopeia and National Formulary (USP 35-NF 30). Tetracycline Hydrochloride. http://usp35.infostar.com.cn/uspnf/pub/data/v35300/usp35nf30s0_m81810.html#usp35nf30s0_m81810
11 Mullin, J. W. Crystallization, 4th ed.; Butterworth-Heinemann, 2001.
12 Genck, W. Make The Most of Antisolvent Crystallization. A number of factors can affect solids′ formation.
https://www.chemicalprocessing.com/articles/2010/210/ (accessed November 08, 2010).
13 Brubaker, J. How to Calculate HPLC Resolutions.
https://sciencing.com/calculate-hplc-resolutions-7547102.html (accessed April 30, 2018).
14 Hair, M. L. Hydroxyl groups on silica surface. J Non Cryst Solids. 1975, 19, 299-309.
15 Reverchon, E.; Caputo, G.; Marco, I. D. Role of Phase Behavior and Atomization in the Supercritical Antisolvent Precipitation. Ind. Eng. Chem. Res. 2003, 42(25), 6406-6414.

Chapter 4.
1 Genck, W. Make The Most of Antisolvent Crystallization: A number of factors can affect solids′ formation.
https://www.chemicalprocessing.com/articles/2010/210/ (accessed November 08. 2010).
2 Robbe, C. L.; Jeb, S. T.; Donna, A. P.; Hullahalli, R. P.; Ajaz, S. H. Stability Profiles of Drug Products Extended beyond Labeled Expiration Dates. J Pharm Sci. 2006, 95(7), 1549-1560.
3 U.S. Food and Drug Administration. Don’t Be Tempted to Use Expired Medicines. https://www.fda.gov/drugs/special-features/dont-be-tempted-use-expired-medicines (accessed April 01, 2016)
4 Vapor-Liquid Equilibrium Calculator.
http://www.vle-calc.com/phase_diagram.html
5 Cassata, J. R.; Parker, S. J.; Hwan, R. J.; Conkwright, C. J. Extraction of methanol from methyl tertiary butyl ether. E. P. Patent No. 0652199A1, 1994.
6 Chen, Y.; Pan, Z.; Dong, Y. Measurements of Liquid−Liquid Equilibria for Quaternary Mixtures of Water, Methyltert-Butyl Ether, and Diisopropyl Ether with Methanol or Ethanol. Journal of Chemical & Engineering Data. 2005, 50(3), 1047-1051.
指導教授 李度(Tu Lee) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明