博碩士論文 107426034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:18.119.163.95
姓名 王新淳(Xin-Chun Wang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類Kiva系統之Pod分配揀貨工作站挑選、Pod分配與品項分配之相關問題探討
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著網路技術的進步,大幅的改變了人們之消費習慣,顧客無論在何時何處都能夠在網路上選購商品,顛覆以往花費時間成本到實體店面購物。這種消費習慣的轉變也迫使物流中心做出改變,追求更有效率之運作模式。

工業4.0的到來使得物流中心智慧化,提升了物流中心競爭力。全球電子商務龍頭亞馬遜於2012年收購Kiva System,並以Kiva System為其第八代物流中心之核心。Kiva System最大之特色為Kiva機器人,以「物到人」的方式完成揀貨作業,降低了龐大的人力成本,此舉顛覆了以往以「人到物」的方法進行揀貨作業,也大幅提升了物流中心之效率。

本研究欲探討類Kiva系統中之「Pod分配之揀貨工作站挑選」、「Pod分配挑選」及「訂單分配之品項挑選」等派送問題,並且透過模擬軟體提出多種績效指標,用來評估及分析何種因子法則之組合能有最好的表現,期望能找出最佳之法則使類Kiva系統達到最佳效能,減少不必要的浪費。本研究將延續何東益(2019)之研究,觀察何東益(2019)所提出之單屬性法則並發展出一多屬性評估法則,期望多屬性評估法則能在類Kiva系統中有不錯的績效表現。
摘要(英) With the advancement of network technology, people′s consumption habits have been greatly changed. Customers can buy goods on the Internet no matter when and where they are, subverting the time and cost of shopping in physical stores. This change in consumption habits also forced the logistics center to make changes in pursuit of a more efficient operation mode.
The arrival of Industry 4.0 makes the logistics center intelligent and enhances the competitiveness of the logistics center. Global e-commerce leader Amazon acquired Kiva System in 2012, and made Kiva System the core of its eighth-generation logistics center. The biggest feature of the Kiva System is the Kiva robot, which completes the picking operation in a "goods-to-human" way, which reduces the huge labor cost. This move subverts the previous "human-to-goods" method for picking operations, and also greatly improves The efficiency of the logistics center.
This paper intends to explore the delivery problems of " workstation selection", "Pod allocation" and "SKU allocation" in Kiva-like systems, and proposes various performance indicators through simulation software for evaluation and Analyze what combination of factor laws can have the best performance, and expect to find the best law to make the Kiva-like system achieve the best performance and reduce unnecessary waste. This research will continue the research of Ho (2019), observe the single-attribute rule proposed by Ho (2019) and develop a multi-attribute evaluation rule, hoping that the multi-attribute evaluation rule can perform well in Kiva-like systems .
關鍵字(中) ★ Kiva System
★ 物流
★ 多屬性評估方法
關鍵字(英) ★ Kiva System
★ Logistics
★ Multi-attribute evaluation
論文目次 目錄
摘要 i
ABSTRACT ii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
1.3 研究動機 2
1.4 研究環境 2
1.5 研究架構 4
第二章 文獻探討 6
2.1 物流 6
2.1.1 物流之定義 6
2.1.2 物流中心之類型與作業 7
2.2 揀貨介紹 9
2.2.1 揀貨作業 9
2.2.2 揀貨路徑策略 13
2.3 Kiva系統 15
2.3.1 Kiva系統介紹 16
2.3.2 Kiva系統之相關研究 20
第三章 研究方法 23
3.1 符號及變數定義 23
3.2 類Kiva系統作業流程 24
3.2.1 揀貨工作站作業流程 24
3.2.2 Pod分配流程 27
3.3 各研究議題之方法整理 30
3.4 Pod分配之揀貨工作站挑選法則 31
3.4.1 隨機挑選法則 31
3.4.2 「已分配Pod數最小」法則 31
3.4.3 「未滿足訂單品項總數最小」法則 32
3.4.4 「訂單總寬放時間最少」法則 33
3.4.5 「訂單平均寬放時間最少」法則 33
3.4.6 「最小總寬放時間與尚未滿足揀貨的訂單品項總數之比值」法則 34
3.4.7 揀貨工作站之多屬性評估法則 35
3.5 Pod分配挑選法則 37
3.5.1 隨機法則 37
3.5.2 「距離揀貨工作站最近的Pod優先」法則 37
3.5.3「有品項種類被Pod滿足之訂單的平均出貨時間最近優先」法則 38
3.5.4 Pod多屬性評估法則 40
3.6 品項分配法則 44
3.6.1 隨機法則 44
3.6.2 「對該品項種類IT*需求量愈大之訂單愈優先」法則 44
3.6.3 「對該品項種類IT*需求量愈小之訂單愈優先」法則 45
3.6.4 「未滿足品項種類數愈多之訂單愈優先」法則 46
3.6.5 「未滿足品項總數愈多之訂單愈優先」法則 48
3.6.6 訂單多屬性評估法則 49
第四章 實驗結果與分析 53
4.1 模擬實驗設計 53
4.1.1 環境設定 53
4.1.2 訂單設定與其他設定 55
4.1.3 實驗假設 56
4.1.4 實驗因子組合 56
4.2 績效評估指標 58
4.3 統計分析 58
4.3.1 依「總系統執行時間」為績效指標 60
4.3.2 依「訂單流程時間」為績效指標 65
4.3.3 依「差異時間」為績效指標 70
4.3.4 依「延遲時間」為績效指標 75
4.3.5 依「總Pod行走時間」為績效指標 80
4.3.6 依「Pod在工作站平均等待時間」為績效指標 84
4.4 實驗結論 89
第五章 結論與後續建議 93
5.1 研究結論 93
5.2 未來研究建議 94
參考文獻 95
中文文獻 95
參考文獻 中文文獻
1. 何東益,2019,類Kiva系統之Pod分配與品項分配之相關問題探討,國立中央大學工業管理研究所。,碩士論文。
2. 吳詩涵,2011,「在同步分區揀貨倉庫之合作揀貨探討」,國立中央大學工業管理研究所,碩士論文。
3. 宋狄軒,2017,「類 Kiva 系統的「Pod 分配之揀貨站挑選」、「Pod 分配於揀貨站」與「品項分配至訂單」問題之探討,國立中央大學工業管理研究所,碩士論文。
4. 周曉光、張喜妹、劉玉坤,2015,一種基於移動機器人的配送中心柔性揀選系統,物流技術,34(7),238-240。
5. 張福榮,2005,「物流管理」,五南圖書,台北,二版。
6. 張簡復中,2010,「物流管理」,新文京開發,台北,二版
英文文獻
1. Azadeh, K., de Koster, R., & Roy, D. (2017). Robotized warehouse systems: Developments and research opportunities(No. ERS-2017-009-LIS).
2. Bartholdi, J. J. and S. T. Hackman (2008). Warehouse & distribution science: Release 0.89, Supply Chain and Logistics Institute.
3. Boysen, N., et al. (2017). "Parts-to-picker based order processing in a rack-moving mobile robots environment." European journal of operational research 262(2): 550-562.
4. Chen, F., et al. (2016). "An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse." Journal of Intelligent Manufacturing 27(2): 389-408.
5. De Koster, R., et al. (2007). "Design and control of warehouse order picking: A literature review." European journal of operational research 182(2): 481-501.
6. Goetschalckx, M. and H. Donald Ratliff (1988). "Order picking in an aisle." IIE transactions 20(1): 53-62.
7. Gourdin, K. N. (2001). Global logistics management: a competitive advantage for the new millennium. Blackwell Publishers.
8. Grosse, E. H., et al. (2017). "Human factors in order picking: a content analysis of the literature." International Journal of Production Research 55(5): 1260-1276.
9. Guan, M. and Z. Li (2018). "Pod layout problem in kiva mobile fulfillment system using synchronized zoning." Journal of Applied Mathematics and Physics 6(12): 2553-2562.
10. Guizzo, E. (2008). "Three engineers, hundreds of robots, one warehouse." IEEE spectrum 45(7): 26-34.
11. Henn, S., et al. (2010). "Metaheuristics for the order batching problem in manual order picking systems." Business Research 3(1): 82-105.
12. Hong, S., et al. (2015). "Quantifying picker blocking in a bucket brigade order picking system." International Journal of Production Economics 170: 862-873.
13. Hsieh, L. F.,& Huang, Y. C. (2011). New batch construction heuristics to optimise the performance of order picking systems. Industrial Journal of Production Economics, 131(2),618-630.
14. Kumar, N. V. and C. S. Kumar (2018). "Development of collision free path planning algorithm for warehouse mobile robot." Procedia computer science 133: 456-463.
15. Lamballais, T., et al. (2017). "Inventory allocation in robotic mobile fulfillment systems." Available at SSRN 2900940.
16. Lamballais, T., et al. (2017). "Estimating performance in a robotic mobile fulfillment system." European journal of operational research 256(3): 976-990.
17. Lao, S., et al. (2012). "A real-time food safety management system for receiving operations in distribution centers." Expert Systems with Applications 39(3): 2532-2548.
18. Lee, C., et al. (2018). "Design and application of Internet of things-based warehouse management system for smart logistics." International Journal of Production Research 56(8): 2753-2768.
19. Liu, Y., et al. (2019). Multi-agent Pathfinding Based on Improved Cooperative A* in Kiva System. 2019 5th International Conference on Control, Automation and Robotics (ICCAR), IEEE.
20. Lorente-Cebrián, S., et al. (2013). "Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence." Journal of physiology and biochemistry 69(3): 633-651.
21. Lu, W., et al. (2016). "An algorithm for dynamic order-picking in warehouse operations." European journal of operational research 248(1): 107-122.
22. Malmborg, C. J. (1995). "Optimization of cube-per-order index warehouse layouts with zoning constraints." THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 33(2): 465-482.
23. Merschformann, M., Lamballais, T., de Koster, R., & Suhl, L. (2018). Decision rules for robotic mobile fulfillment systems. arXiv preprint arXiv:1801.06703.
24. Pan, J. C.-H. and M.-H. Wu (2009). "A study of storage assignment problem for an order picking line in a pick-and-pass warehousing system." Computers & Industrial Engineering 57(1): 261-268.
25. Parikh, P. J. and R. D. Meller (2008). "Selecting between batch and zone order picking strategies in a distribution center." Transportation Research Part E: Logistics and Transportation Review 44(5): 696-719.
26. Petersen, C. G. (2000). "An evaluation of order picking policies for mail order companies." Production and operations management 9(4): 319-335.
27. Petersen, C. G. and G. Aase (2004). "A comparison of picking, storage, and routing policies in manual order picking." International Journal of Production Economics 92(1): 11-19.
28. Petersen, C. G. and R. W. Schmenner (1999). "An evaluation of routing and volume‐based storage policies in an order picking operation." Decision Sciences 30(2): 481-501.
29. Rao, S. S. and G. K. Adil (2013). "Class-based storage with exact S-shaped traversal routeing in low-level picker-to-part systems." International Journal of Production Research 51(16): 4979-4996.
30. Ratliff, H. D. and A. S. Rosenthal (1983). "Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem." Operations Research 31(3): 507-521.
31. Richards, G. (2017). Warehouse management: a complete guide to improving efficiency and minimizing costs in the modern warehouse, Kogan Page Publishers.
32. Rivas, D., et al. (2018). Auction Model for Transport Order Assignment in AGV Systems. Workshop of Physical Agents, Springer.
33. Rosenfeld, A., et al. (2016). "Human-multi-robot team collaboration for efficent warehouse operation." Autonomous Robots and Multirobot Systems (ARMS).
34. Tompkins, J.A., White, J.A., Bozer, Y.A., Frazelle, E.H., and Tanchoco, J.M.A., 2003. “Facilities Planning,” Wiley, New York, 3 Edition.
35. Tompkins, J. A., et al. (2010). Facilities planning, John Wiley & Sons.
36. Tsai, K.-m., et al. (2019). IMPLEMENTING ASSOCIATION RULES FOR RACK REPLENISHMENT IN KIVA SYSTEMS. Symposium on Logistics.
37. Weidinger, F., et al. (2018). "Storage assignment with rack-moving mobile robots in KIVA warehouses." Transportation Science 52(6): 1479-1495.
38. Wulfraat, M. ,(2013). 5 ways to improve order picking productivity, Retrieved December 24, 2016, from https://www.supplychain247.com/article/5_ways_to_improve_order_picking_productivity/MWPVL_International.
39. Wulfraat, M. ,(2015). Is Kiva Systems a good fit for your distribution center? Retrieved April 20, 2019, from: http://www.mwpvl.com/html/kiva_systems.html.
40. Wurman, P. R., et al. (2008). "Coordinating hundreds of cooperative, autonomous vehicles in warehouses." AI magazine 29(1): 9-9.
41. Yan, X., et al. (2017). Multi-AGVs collision-avoidance and deadlock-control for item-to-human automated warehouse. 2017 International Conference on Industrial Engineering, Management Science and Application (ICIMSA), IEEE.
42. Xie, L., Li, H., & Thieme, N. (2018). From simulation to real-world robotic mobile fulfillment systems. arXiv preprint arXiv:1810.03643.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明