博碩士論文 107223058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.138.123.16
姓名 林相慶(Xiang-Ching Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發應用於鈣鈦礦太陽能電池之新穎三聯噻吩類型及苯并咪唑類型電洞傳輸材料
(Development of Terthiophene and Benzimidazole Based Hole Transporting Materials for Perovskite Solar Cell Applications)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 在能源短缺以及環保意識逐漸增強的時代中,再生能源的利用成為了重要的議題,太陽能可說是最為人所重視,並且發展也較成熟。鈣鈦礦太陽能電池的發展,在近10年內光電轉換效率從4%成長到25%,對於電洞傳輸層的研究也是十分重要的,一種好的電洞傳輸材料,能有效提取電荷,進而提升器件的光電轉換效率。
本篇分為兩主題,主題(I)為設計以三聯噻吩(2,2′:5′,2"-terthiophene)為主體之電洞傳輸材料DI101, DI102,藉由改變推拉電子基,觀察其對光電轉換效率的影響。DI系列材料為非晶態物質,並且有好的熱穩定性,及與鈣鈦礦吸光層能階有好的匹配,非常具有潛力成為良好的電洞傳輸材料。
主題(II)為承襲實驗室萬駿學長所合成出的WWC103,並且將末端acceptor group修飾成donor group,使分子呈D-π-D形式之電洞傳輸材料XCL106,XCL106顯示出良好的熱穩定性,溶解度,電荷傳輸能力,並且能與鈣鈦礦吸光層的能階有好的匹配,非常具有潛力成為良好的電洞傳輸材料。
摘要(英) In the era of energy shortages and increasing awareness of environmental protection, the use of renewable energy has become more important issue. Solar Cell is taken more and more seriously and its development has gradually matured.
The power conversion efficiency(PCE) of perovskite solar cells has grown from 4% to 25% in the past few years.
To improve the PCE, development of hole transporting material(HTM) which has excellent ability of positive charge extraction and transportation is one of the important factors.
This article is divided into two themes. Topic(I) is synthesized two terthiophene-based hole transporting materials named DI101, DI102, and observe the effect on the PCE by changing the donor group and acceptor group. The compounds of DI series exhibit amorphous property and have good thermal stability. However, DI series which have good match with the energy level of perovskite, gives it potential as a promising HTM for the further advance of PSCs.
Topic (II) is inherited from Wan Chun’s project. We modified WWC103’s terminal group into a donor group, so that the molecule is in the form of D-π-D hole transporting material XCL106. XCL106 shows good thermal stability, solubility, and charge transport capacity. The better performance gives it potential as a promising HTM for the further advance of PSCs.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電洞傳輸層材料
關鍵字(英) ★ Perovskite solar cell
★ hole transporting materials
論文目次 目錄
中文摘要 i
Abstract ii
誌謝辭 iii
一、緒論 1
1-1 前言 1
1-2 太陽能電池 4
1-3 鈣鈦礦太陽能電池 5
1-4電洞傳輸材料文獻回顧 14
二、結構設計概念與動機(第一部分) 21
2-1 合成策略 24
三、結果討論(第一部分) 30
3-1 物理與化學性質探討 30
3-2 元件測試 37
3-3 總結與未來展望 38
四、結構設計概念與動機(第二部分) 39
五、結果討論(第二部分) 44
5-1 物理與化學性質探討 44
5-2 元件測試 51
5-3 總結與未來展望 52
六、實驗步驟與材料數據 53
6-1 實驗藥品 53
6-2 實驗儀器 53
6-3 實驗步驟與數據(第一部分) 56
附錄 72
參考文獻 91
參考文獻 1. Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. Y., Solar cell efficiency tables (version 52). 2018, 26 (7), 427-436.
2. Ou, Q.; Bao, X.; Zhang, Y.; Shao, H.; Xing, G.; Li, X.; Shao, L.; Bao, Q., Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science 2019, 1 (4), 268-287.
3. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 2015, 8 (5), 1602-1608.
4. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society 2015, 137 (27), 8696-8699.
5. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. 2014, 24 (1), 151-157.
6. Ding, B.; Huang, S.-Y.; Chu, Q.-Q.; Li, Y.; Li, C.-X.; Li, C.-J.; Yang, G.-J., Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. Journal of Materials Chemistry A 2018, 6 (22), 10233-10242.
7. Bai, Y.; Yu, H.; Zhu, Z.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S.; Yan, H., High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. Journal of Materials Chemistry A 2015, 3 (17), 9098-9102.
8. Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. In The role of the hole-transport layer in perovskite solar cells - reducing recombination and increasing absorption, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 8-13 June 2014; 2014; pp 1563-1566.
9. Xu, C.; Liu, Z.; Lee, E.-C., High-performance metal oxide-free inverted perovskite solar cells using poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as the hole transport layer. Journal of Materials Chemistry C 2018, 6 (26), 6975-6981.
10. Cho, K. T.; Cavazzini, M.; Rakstys, K.; Orlandi, S.; Paek, S.; Franckevičius, M.; Kanda, H.; Gegevičius, R.; Emmanuel, Q. V.; Pozzi, G.; Nazeeruddin, M. K., Perovskite Solar Cells: 18% Efficiency Using Zn(II) and Cu(II) Octakis(diarylamine)phthalocyanines as Hole-Transporting Materials. ACS Applied Energy Materials 2019, 2 (9), 6195-6199.
11. Kung, P.-K.; Li, M.-H.; Lin, P.-Y.; Chiang, Y.-H.; Chan, C.-R.; Guo, T.-F.; Chen, P., A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. 2018, 5 (22), 1800882.
12. Lindholm, F. A.; Fossum, J. G.; Burgess, E. L., Application of the superposition principle to solar-cell analysis. IEEE Transactions on Electron Devices 1979, 26, 165.
13. Baruch, P.; De Vos, A.; Landsberg, P. T.; Parrott, J. E., On some thermodynamic aspects of photovoltaic solar energy conversion. Solar Energy Materials and Solar Cells 1995, 36 (2), 201-222.
14. Back, H.; Kim, G.; Kim, J.; Kong, J.; Kim, T. K.; Kang, H.; Kim, H.; Lee, J.; Lee, S.; Lee, K., Achieving long-term stable perovskite solar cells via ion neutralization. Energy & Environmental Science 2016, 9 (4), 1258-1263.
15. Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H.; De Angelis, F.; Abate, A.; Hagfeldt, A.; Pozzi, G.; Graetzel, M.; Nazeeruddin, M. K., A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy 2016, 1 (2), 15017.
16. Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Koh, C. W.; Zhang, X.; Sun, H.; Chen, G.; Feng, X.; Woo, H. Y.; Djurišić, A. B.; He, Z.; Guo, X., Dopant-Free Small-Molecule Hole-Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%. 2019, 31 (35), 1902781.
17. Li, Y.; Cole, M. D.; Gao, Y.; Emrick, T.; Xu, Z.; Liu, Y.; Russell, T. P., High-Performance Perovskite Solar Cells with a Non-doped Small Molecule Hole Transporting Layer. ACS Applied Energy Materials 2019, 2 (3), 1634-1641.
18. Strohriegl, P.; Jesberger, G.; Heinze, J.; Moll, T., The higher homologues of triphenylamine: Model compounds for poly(N-phenyl-1,4-phenyleneamine). 1992, 193 (4), 909-919.
19. Yasuhiko, S.; Tomokazu, K.; Naoki, N., Starburst Molecules for Amorphous Molecular Materials. 4,4′,4″-Tris(N,N-diphenylamino)triphenylamine and 4,4′,4″-Tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine. 1989, 18 (7), 1145-1148.
20. Li, Y.; Xu, Z.; Zhao, S.; Qiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y.; Li, X.; Liu, X.; Xu, X., Highly Efficient p-i-n Perovskite Solar Cells Utilizing Novel Low-Temperature Solution-Processed Hole Transport Materials with Linear π-Conjugated Structure. 2016, 12 (35), 4902-4908.
21. Higuchi, A.; Inada, H.; Kobata, T.; Shirota, Y., Amorphous molecular materials: Synthesis and properties of a novel starburst molecule, 4,4′,4″ -Tri(N-phenothiazinyl)triphenylamine. 1991, 3 (11), 549-550.
22. Choi, H.; Cho, J. W.; Kang, M.-S.; Ko, J., Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells. Chemical Communications 2015, 51 (45), 9305-9308.
23. Molina-Ontoria, A.; Zimmermann, I.; Garcia-Benito, I.; Gratia, P.; Roldán-Carmona, C.; Aghazada, S.; Graetzel, M.; Nazeeruddin, M. K.; Martín, N., Benzotrithiophene-Based Hole-Transporting Materials for 18.2 % Perovskite Solar Cells. 2016, 55 (21), 6270-6274.
24. Huang, C.; Fu, W.; Li, C.-Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, A. K. Y.; Chen, H., Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2016, 138 (8), 2528-2531.
25. Naito, K.; Miura, A., Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties. The Journal of Physical Chemistry 1993, 97 (23), 6240-6248.
26. Pudzich, R.; Fuhrmann-Lieker, T.; Salbeck, J., Spiro Compounds for Organic Electroluminescence and Related Applications. In Emissive Materials Nanomaterials, Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp 83-142.
27. Malinauskas, T.; Tomkute-Luksiene, D.; Sens, R.; Daskeviciene, M.; Send, R.; Wonneberger, H.; Jankauskas, V.; Bruder, I.; Getautis, V., Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. ACS Applied Materials & Interfaces 2015, 7 (21), 11107-11116.
28. Ganesan, P.; Fu, K.; Gao, P.; Raabe, I.; Schenk, K.; Scopelliti, R.; Luo, J.; Wong, L. H.; Grätzel, M.; Nazeeruddin, M. K., A simple spiro-type hole transporting material for efficient perovskite solar cells. Energy & Environmental Science 2015, 8 (7), 1986-1991.
29. Vaitukaityte, D.; Wang, Z.; Malinauskas, T.; Magomedov, A.; Bubniene, G.; Jankauskas, V.; Getautis, V.; Snaith, H. J., Efficient and Stable Perovskite Solar Cells Using Low-Cost Aniline-Based Enamine Hole-Transporting Materials. 2018, 30 (45), 1803735.
30. Li, Z. a.; Zhu, Z.; Chueh, C.-C.; Jo, S. B.; Luo, J.; Jang, S.-H.; Jen, A. K. Y., Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells. Journal of the American Chemical Society 2016, 138 (36), 11833-11839.
31. Chi, W.-J.; Li, Q.-S.; Li, Z.-S., Effect of thiophene chain lengths on the optical and hole transport properties for perovskite solar cells. Synthetic Metals 2016, 211, 107-114.
32. Paek, S.; Zimmermann, I.; Gao, P.; Gratia, P.; Rakstys, K.; Grancini, G.; Nazeeruddin, M. K.; Rub, M. A.; Kosa, S. A.; Alamry, K. A.; Asiri, A. M., Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency. Chemical Science 2016, 7 (9), 6068-6075.
33. Thelakkat, M., Star-Shaped, Dendrimeric and Polymeric Triarylamines as Photoconductors and Hole Transport Materials for Electro-Optical Applications. 2002, 287 (7), 442-461.
34. Petrus, M. L.; Bein, T.; Dingemans, T. J.; Docampo, P., A low cost azomethine-based hole transporting material for perovskite photovoltaics. Journal of Materials Chemistry A 2015, 3 (23), 12159-12162.
35. Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L., Computational Explorations of Mechanisms and Ligand-Directed Selectivities of Copper-Catalyzed Ullmann-Type Reactions. Journal of the American Chemical Society 2010, 132 (17), 6205-6213.
36. Bailie, C. D.; Unger, E. L.; Zakeeruddin, S. M.; Grätzel, M.; McGehee, M. D., Melt-infiltration of spiro-OMeTAD and thermal instability of solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics 2014, 16 (10), 4864-4870.
37. Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. 2011, 23 (20), 2367-2371.
38. Wang, Y.; Yang, Y.; Uhlik, F.; Slanina, Z.; Han, D.; Yang, Q.; Yuan, Q.; Yang, Y.; Zhou, D.-Y.; Feng, L., Enhancing photovoltaic performance of inverted perovskite solar cells via imidazole and benzoimidazole doping of PC61BM electron transport layer. Organic Electronics 2020, 78, 105573.
指導教授 李文仁(Wen-Ren Li) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明