參考文獻 |
[1] A. Väyrynen and J. Salminen, “Lithium Ion Battery Production”, J. Chem. Thermodynamics, vol. 46, pp. 80-85, 2011.
[2] 林幸慧 : 《鋰離子電池材料產業發展趨勢》,工研院產業科技國際策略發展所,2019。
[3] F. Saidani, F.X. Hutter, W. Selinger, Z. Yu, J.N. Burghartz, “A Lithium-Ion Battery Demonstrator for HEV Applications Featuring a Smart System at Cell Level”, International Systems Engineering Symposium, 2017.
[4] New Energy and Industrial Technology Development Organization.
https://www.nedo.go.jp/hyokabu/articles/200905hitachi/img/c01_1.jpg.
[5] M. S. Islam, C.A.J. Fisher, “Lithium and Sodium Battery Cathode Materials: Computational Insights into Voltage, Diffusion and Nanostructural Properties”, Royal Society of Chemistry, vol. 43, pp. 185-204, 2014.
[6] J. Lu and K.S. Lee, “Spinel Cathodes for Advanced Lithium Ion Batteries: A Review of Challenges and Recent Progress”, Materials Technology, vol. 31, 2016.
[7] K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, “LixCoO2 (0<x<1) : A New Cathode Material for Batteries of High Energy Density”, Materials Research Bulletin, vol. 15, pp. 783-789, 1980.
[8] P. Rozier, J. M. Tarascon, Journal of the Electrochemical Society, vol. 162, pp. 2490-2499, 1953.
[9] L.D. Dyer, B.S. Borie, and G.P. Smith, “Alkali Metal-Nickel Oxides of the Type MNiO2”, Journal of the American Chemical Society, pp. 1499-1503, 1954.
[10] Y. S. Meng and M.E.A. Dompablo, “First Principles Computational Materials Design for Energy Storage Materials in Lithium Ion Batteries”, Royal Society of Chemistry, vol. 2, pp. 589-609, 2009.
[11] A.K. Padhi, K.S. Najundaswamy, C. Masquelier, S. Okada, and J. B. Goodenoygh, “Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates”, Journal of the Electrochamical Society, vol. 144, pp. 1609-1613, 1997.
[12] C. Daniel, D. Mohanty, J. Li and D.L. Wood, “Cathode Materials Review”, AIP Conference Proceedings, vol. 1597, pp. 26-43, 2015.
[13] D. Moragn, A. Van der Ven, and G. Geder, “Li Conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) Olivine Materials”, Electrochemical and Solid-State Letters, vol. 7, pp. 30-32, 2003.
[14] S. Soylu, “Electric Vehicles-the Benefits and Barriers”, InTechOpen, ISBN: 978-953-307-287-6, 2011.
[15] D. Tuite, “Understanding the Factors in the Lithium-Battery Equation”, Electronic Design, vol. 60, pp. 46-50, 2012.
[16] 張彥博,陳金銘,郭信良,鄭季汝 : 《鋰離子電池高容量負極材料技術》 ,工業材料雜誌267期,53-60頁,2009年。
[17] 呂承璋,鄭敬則,劉文龍,張志溢 : 《鋰離子電池高容量負極材料技術》,工業材料雜誌326期,52-61頁,2014年。
[18] Y. Matsumura, S. Wang and J. Mondori, “Interactions between Disordered
Carbon and Lithium in Lithium Ion Rechargeable Batteries”, Carbon, vol.
33, pp. 1457-1462, 1995.
[19] R. Yazami, “Surface Chemistry and Lithium Storage Capability of the
Graphite-Lithium Electrode”, Electrochimica Acta, vol.45, pp. 87-97, 1999.
[20] Y.P. Wu, E. Rahm and R. Holze, “Carbon Anode Materials for Lithium Ion Battery”, Journal of Power Sources, vol.114, pp. 228-236, 2002.
[21] M. Yoshio, R. J. Brodd, A. Kozawa, “Lithium-Ion Batteries”, Science and Technologies, ISBN: 978-0-387-34444-7, 2009.
[22] S.F. Lux, F. Schappacher, A. Balducci, S. Passerini and M. Winter, “Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries”, Journal of the Electrochemical Society, vol. 157, number 3, pp. 320-355, 2010.
[23] M. Yang and J. Hou, “Membranes in Lithium Ion Batteries”, Membranes, vol. 2, pp. 367-383, 2012.
[24] S. Chen, K. Wen, J. Fan, Y. Bando and D. Golberg, “Progress and Future Prospects of High-Voltage and High-Safety Electrolytes in Advanced Lithium Batteries: From Liquid to Solid Electrolytes”, Journal of Materials Chemistry, vol. 6, pp. 11631-11663, 2018.
[25] Y.H. Liu, H.H. Lin, Y.J. Tai, “Binder-Free Carbon Fiber-Based Lithium-Nickel-Manganese-Oxide Composite Cathode with Improved Electrochemical Stability against High Voltage: Effects of Composition on Electrode Performance”, Journal of Alloys and Compounds, vol. 735, pp. 580-587, 2018.
[26] M. Wagemaker, F.G.B. Ooms, E.M. Kelder, J. Schoonman, G.J. Kearley and F.M. Mulder, “Extensive Migration of Ni and Mn by Lithiation of Ordered LiMg0.1Ni0.4Mn1.5O4 Spinel”, Journal of the American Chemical Society, vol. 126, pp. 13526-13533, 2004.
[27] Y. Sun, Y. Yang and H. Zhan, “Synthesis of High Power Type LiMn1.5Ni0.5O4 by Optimizing Its Preparation Conditions”, Journal of Power Sources, vol. 195, pp. 4322-4326, 2010.
[28] T. Ohzuku and R.J. Brodd, “An Overview of Positive Electrode Materials for Advanced Lithium-Ion Batteries”, Journal of Power Sources, vol. 174, pp. 449-456, 2007.
[29] R. Santhanam and B. Rambabu, “Research Progress in High Voltage Spinel LiNi0.5Mn1.5O4 Material”, Journal of Power Sources, vol. 195, pp. 5442-5451, 2010.
[30] J.H. Kim, S.T. Myung and Y.K. Sun, “Molten Salt Synthesis of LiNi0.5Mn1.5O4 Spinel for 5 V Class Cathode Material of Li-Ion Secondary Battery”, Electrochimica Acta, vol. 49, pp. 219-227, 2004.
[31] T. Kozawa, D. Hirobe, K. Uehara and M. Naito, “Low Temperature Synthesis of LiNi0.5Mn1.5O4 Grains Using A Water Vapor-Assisted Solid-State Reaction”, Journal of Solid State Chemistry, vol. 263, pp. 94-99, 2018
[32] L. Zhou, D. Zhao and X.W. Lou, “LiNi0.5Mn1.5O4 Hollow Structures as High-Performance Cathodes for Lithium-Ion Batteries”, Angewandte Chemie International Edition, vol. 51, 2011.
[33] E. Zhao, L. Wei, Y. Guo, Y. Xu, W. Yan, D. Sun and Y. Jin, “Rapid Hydrothermal and Post-Calcination Synthesis of Well-Shaped LiNi0.5Mn1.5O4 Cathode Materials for Lithium Ion Batteries”, Journal of Alloys and Compounds, vol. 695, pp. 3393-3401, 2017.
[34] S. R. Li, C. H. Chen and J. R. Dahn, “Studies of LiNi0.5Mn1.5O4 as a Positive Electrode for Li-Ion Batteries: M3+ Doping (M = Al, Fe, Co and Cr), Electrolyte Salts and LiNi0.5Mn1.5O4/Li4Ti5O12 Cells”, Journal of the Electrochemical Society, vol. 160, number 11, pp. 2166-2175, 2013.
[35] W. Wang, H. Liu, Y. Wang, C. Gao and J. Zhang, “Effects of Chromium Doping on Performance of LiNi0.5Mn1.5O4 Cathode Material”, Transactions of Nonferrous Metals Society of China, vol. 23, pp. 2066−2070, 2013.
[36] S. Wang, P. Li, L. Shao, K. Wu, X. Lin, M. Shui, N. Long, D. Wang and J. Shu, “Preparation of Spinel LiNi0.5Mn1.5O4 and Cr-doped LiNi0.5Mn1.5O4 Cathode Materials by Tartaric Acid Assisted Sol–Gel Method”, Ceramics International, vol. 41, pp. 1347-1353, 2015.
[37] H. Yang, K. Kwon, T.M. Devine and J.W. Evans, “Aluminum Corrosion in Lithium Batteries An Investigation using the Electrochemical Quartz Crystal Microbalance”, Journal of the Electrochemical Society, vol 147, number 12, pp. 4399-4407, 2000.
[38] M. Wang, M. Tang, S. Chen, H. Ci, K. Wang, L. Shi, L. Lin, H. Ren, J. Shan, P. Gao, Z. Liu, and H. Peng, “Graphene-Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithium-Ion Battery”, Advanced Materials, vol. 29, 2017.
[39] Y. Meng, J. Xia, L. Wang, G. Wang, F. Zhu and Y. Zhang, “A Comparative Study on LiFePO4/C By In-Situ Coating with Different Carbon Sources for High-Performance Lithium Batteries”, Electrochimica Acta, vol. 261, pp. 96-103, 2018.
[40] L. Zhang, X. Qin, S. Zhao, A. Wang, J. Luo, Z.L. Wang, F. Kang, Zhiqun Lin, and Baohua Li, “Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries”, Advanced Materials, vol. 32, 2020.
[41] O. Toprakci, L. Ji, Z. Lin, H.A.K. Toprakci and X. Zhang, “Fabrication and Electrochemical Characteristics of Electrospun LiFePO4/Carbon Composite Fibers for Lithium-Ion Batteries”, Journal of Power Sources, vol. 196, pp. 7692-7699, 2011.
[42] B.S. Kang, Y.T. Sul, S.J. Oh, H.J. Lee and T. Albrektsson, “XPS, AES and
SEM analysis of recent dental implants”, Acta Biomaterialia, vol. 5, pp. 2222-2229, 2009.
[43] R. Kizil, J. Irudayaraj, and K. Seetharaman “Characterization of Irradiated
Starches by Using FT-Raman and FTIR Spectroscopy”, Journal of Agricultural Food Chemistry, vol. 50, pp. 3912-3918, 2002.
[44] I. M. Salin and J. C. Seferis, “Kinetic Analysis of High‐Resolution TGA Variable Heating Rate Data”, Journal of Applied Polymer Science, vol. 47, 1993.
[45] 胡啟章 :《電化學原理與方法》,ISBN : 9571131180,2011。
[46] K. Tang, X. Yu, J. Sun, H. Li and X. Huang, “Kinetic Analysis on LiFePO4 Thin Films by CV, GITT, and EIS”, Electrochimica Acta, vol. 56, pp. 4869-4875, 2011.
[47] L. Yao, M. Li, Q. Wu, Z. Dai, Y. Gu, Y. Li and Z. Zhang, “Comparison of Sizing Effect of T700 Grade Carbon Fiber on Interfacial Properties of Fiber/BMI and Fiber/Epoxy”, Applied Surface Science, vol. 263, pp. 326-333, 2012.
[48] C. L. Chiang and C. C. Ma, “Synthesis, Characterization and Thermal Properties of Novel Epoxy Containing Silicon and Phosphorus Nanocomposites By Sol–Gel Method”, European Polymer Journal, vol. 38, pp. 2219-2224, 2002.
[49] G.Y. Liu, X. Kong, Q.B. Wang, H.Y. Sun, B.S. Wang and Z.Z. Yi, “Low Temperature Solution Combustion Synthesis of High Performance LiNi0.5Mn1.5O4", Ceramics International vol. 40, pp. 6447-6452, June 2014.
[50] Y.J. Gu, Y. Li, Y.B. Chen, H.Q. Liu, “Comparison of Li/Ni Antisite Defects in Fd-3m and P4332 Nanostructured LiNi0.5Mn1.5O4 Electrode for Li-ion Batteries”, Electrochimica Acta, vol. 213, pp. 368-374, 2016.
[51] S. Rajakumar, R. Thirunakaran, A. Sivashanmugam, J. Yamaki and S. Gopukumara, “Electrochemical Behavior of LiM0.25Ni0.25Mn1.5O4 as 5 V Cathode Materials for Lithium Rechargeable Batteries”, Journal of the Electrochemical Society, vol. 156, pp. 246-252, 2009.
[52] R. Younesi, S. Malmgren, K. Edström and S. Tan, “Influence of Annealing
Temperature on the Electrochemical and Surface Properties of the 5-V Spinel Cathode Material LiCr0.2Ni0.4Mn1.4O4 Synthesized by A Sol–Gel Technique”, Journal of Solid State Electrochemistry, vol. 18, pp. 2157-2166, 2014.
[53] G.B. Zhong, Y.Y. Wang, Y.Q. Yu and C.H. Chen, “Electrochemical Investig-
-ations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5 V cathode materials for lithium ion batteries”, Journal of Power Sources, vol. 205, pp. 385-3931, 2012.
[54] M. Li, Y. Gu, Y. Liu, Y. Li and Z. Zhang, “Interfacial Improvement of Carbon Fiber/Epoxy Composites Using A Simple Process for Depositing Commercially Functionalized Carbon Nanotubes on the Fbers”, Carbon, vol. 52, pp. 109-121, 2013. |