博碩士論文 102283001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:165 、訪客IP:18.118.227.69
姓名 王毓傑(Yu-Chieh Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 分散式液相微萃取技術與微波輔助合成螢光探針於微量分析檢測之探討
(The study of dispersive liquid phase microextraction and microwave-assisted synthesis of fluorescent probe for trace analysis)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本研究目的在於分散式液液微萃取技術的開發以及利用微波輔助一鍋化合成螢光探針。本論文可分為三個主題,第一個主題為利用實驗設計法快速優化分散式液液微萃取技術,第二部分使用自動化動態單滴技術提升分散式液液微萃取技術,第三個主題為合成新型螢光分子作為探針使用。

第一部分,我們使用田口法和響應曲面法優化分散液液微萃取技術 (DLLME) 的連續性和不連續性參數。並使用DLLME結合負化學游離法氣相層析質譜,檢測農產品中六種擬除蟲菊酯農藥:芬普寧、芬化利、護賽寧、λ-賽洛寧、賽滅寧與第滅寧。
通過田口方法和響應曲面法優化所得的最佳條件顯示:在pH 4環境下,氯仿70 μL (萃取劑),丙酮300 μL (分散劑)和5%氯化鈉 (鹽類添加濃度),超聲波輔助3分鐘,離心3分鐘。
在最佳提取條件下,該方法的線性範圍為20-50000 pg / mL,相關係數為0.991-0.996,方法檢出限為5-35 pg / mL,inter-day與intra-day的相對標準偏差值介於3.2-8.5%。該方法成功應用於測定飲料,水果,蔬菜,藥材等目標分析物的13個實際樣品,標準添加法的最高濃度方法為1500 pg / mL,回收率介於74%-130%。

第二部分驗證一種概念性的突破,涉及自動化動態混合單滴液液微萃取技術 (ADMD-DLLME)。為了有效檢驗環境水樣中有機磷酸酯的濃度,開發了一種ADMD-DLLME方法並與結合氣相層析質譜儀。藉由注射幫浦,可以簡單而穩定地產生液滴,當樣品和提取溶劑接觸時相互混合,立即完成提取。ADMD-DLLME克服了傳統DLLME中需要手動操作的局限性,並避免了使用昂貴的設備來自動化DLLME。此外,使用一次性樣品注射注射器可防止樣品殘留物污染。響應面方法用於優化影響ADMD-DLLME的參數,並使用變異數分析進行統計分析。在最佳條件下,該方法具有良好的線性範圍 (1-800 µg / L),偵測極限 (0.1-0.4 µg / L) 和再現性 (RSD = 1.3%-10.7%)。該方法已成功應用於真實水庫水,海水和河水。

第三部分開發了一種快速,便宜和方便的方法用於微波輔助合成吲哚-3-丙酸 - 雙酚A二縮水甘油醚 (IPA-SR3) 熒光探針。 該熒光探針根據濃度而有光誘導電子轉移和聚集誘導發射的雙重發光特性。 聚集的IPA-SR3具有波長依賴性光致發光行為對Cu 2+離子具有高度選擇性 (Ksv = 1.5×104 M-1) 以及低檢測限 (2.9 μM)。因此,它可用於檢測水樣中的低濃度Cu 2+離子。
摘要(英) Abstract
The purpose of this study is to develop a dispersive liquid-liquid microextraction (DLLME) technology and to develop fluorescent probes using microwave-assisted one-pot synthesis. This thesis consists of three themes, the first of which involves the rapid optimization of the DLLME technology using the experimental design method. The second theme concerns the improvement of the DLLME technology using the automatic dynamic mixing droplet technology. Finally, the third theme involves the synthesis of a new type of probe using fluorescent molecules.
In the first part, we adopted the Taguchi method and response surface methodology to optimize parametric continuity and discontinuity of the DLLME technology. The DLLME technology was integrated with the gas chromatography involving negative ion chemical ionization mass spectrometry to test six pyrethroid pesticides in agricultural products, namely Fenpropathrin, Fenvalerate, Flucythrinate, λ-Cyhalothrin, Cypermethrin, and Deltamethrin.
By using the Taguchi method and the response surface methodology, the following optimal conditions were achieved: hloroform 70 μL (extraction solvent), acetone 300 μL (dispersant), and 5% sodium chloride (salt addition concentration) were mixed in a pH 4 environment. Ultrasound was utilized in the extraction for 3 minutes, and the mixture was centrifuged for 3 minutes.
Under the optimum extraction condition, the linear range of this method was 20–50000 pg/mL, the correlation coefficient was 0.991–0.996, the detection limit was 5–35 pg/mL, and the relative standard deviation values of the inter- and intra-day analysis was 3.2%–8.5%.
This method was applied to analyze 13 real samples of the target analytes, including beverages, fruits, vegetables, and herbs. In the standard addition method, the highest concentration used was 500 pg/mL, and the relevant extraction recovery was 74%–130%.
In the second part concerned the verification of a conceptual breakthrough, which involved automatic dynamic mixing droplet DLLME (ADMD-DLLME). To effectively test the organophosphate ester concentration in the environmental water samples, the ADMD-DLLME method was developed and integrated with the gas chromatography-mass spectrometry. Droplets were stably generated with ease using syringe pumps. When the sample and the extraction solvent contacted each other and temporarily mixed, the extraction was conducted immediately. The ADMD-DLLME overcame the conventional limitation of the DLLME method that required manual handling, and no expensive equipment was involved in the automation of the DLLME method. In addition, the use of disposable sample injection syringes prevented contaminations caused by sample residue. The response surface methodology was adopted to optimize parameters affecting the ADMD-DLLME. Analysis of variance was conducted for statistical analysis. Under the optimized condition, the ADMD-DLLME method exhibited favorable linearity (1–800 µg/L), detection limit (0.1–0.4 µg/L), and reproducibility (RSD = 1.3%–10.7%). The method had been applied to samples from reservoir water, sea water, and river water.
In the last part, a rapid, inexpensive, and convenient method was developed and applied in the microwave assisted synthesis of indole-3-propionic acid–bisphenol A diglycidyl ether (IPA–SR3) fluorescent probes. The fluorescent probe exhibited the dual illumination characteristics of photo-induced electron transfer and aggregation-induced emission based on concentrations. The aggregated IPA–SR3 displayed a wavelength-dependent photoluminescence behavior; it was highly selective to Cu 2+ (Ksv = 1.5×104 M-1) and had a low limit of detection (2.9 μM). Therefore, it was applicable to detecting low-concentration Cu 2+ in water samples.
關鍵字(中) ★ 分散式液相微萃取 關鍵字(英) ★ Dispersive Liquid phase microextraction
論文目次 目錄
第一章 緒論 1
1-1前言 1
1-2環境汙染物 4
1-2-1農藥 4
1-2-2阻燃劑 5
1-2-3重金屬 5
1-3液相萃取法 7
1-4氣相層析質譜儀 9
1-5 研究目的 11
第二章 實驗設計法優化分散式液液微萃取技術結合負化學游離法氣相層析質譜儀檢測農產品中擬除蟲菊精 12
2-1前言 12
2-2實驗 15
2-2-1 藥品 15
2-2-2 負化學游離法氣相層析質譜儀 ( GC / NICI / MS ) 條件設定 17
2-2-3 實驗藥品製備 19
2-2-3-1擬除蟲菊精儲備標準溶液配置方法 19
2-2-3-2擬除蟲菊精混和標準溶液配置方法 19
2-2-3-3內標準品標準溶液配置方法 19
2-2-3-4 檢量線標準溶液配置方法 19
2-2-3-5檢量線標準水溶液配置方法 19
2-2-3-6真實樣品配置方法 20
2-2-4 實驗流程 21
2-3 結果與討論 22
2-3-1 正交實驗設計法最佳化參數 23
2-3-2 反應曲面設計法最佳化參數 32
2-3-3 單一因子實驗設計法 47
2-3-4 方法確校 52
2-3-5 真實樣品檢測 54
2-4 小結 57
第三章 自動化動態混合單滴液液微萃取結合氣相層析質譜儀檢測環境水樣中有機磷酸酯 58
3-1前言 58
3-2實驗 60
3-2-1 藥品 60
3-2-2 氣相層析質譜儀 ( GC / MS ) 條件設定 62
3-2-3 實驗藥品製備 64
3-2-3-1有機磷阻燃劑儲備標準溶液配置方法 64
3-2-3-2有機磷阻燃劑混和標準溶液配置方法 64
3-2-3-3內標準品標準溶液配置方法 64
3-2-3-4 檢量線標準溶液配置方法 64
3-2-3-5檢量線標準水溶液配置方法 65
3-3-3-6真實樣品配置方法 65
3-2-4 實驗流程 66
3-3 結果與討論 68
3-3-1 反應曲面設計法最佳化參數 69
3-3-2 全因子實驗設計 84
3-3-3 方法確校 86
3-3-4 真實樣品檢測 88
3-4小結 93
第四章 一鍋化微波輔助快速合成光致發光銅離子螢光感測器 94
4-1前言 94
4-2實驗 96
4-2-1 藥品 96
4-2-2 IPA-SR3之合成 97
4-2-3 高效能液相層析儀檢設IPA-SR3條件設定 99
4-2-4 半製備型高效能液相層析儀分離純化IPA-SR3條件設定 100
4-2-4 實驗樣品製備 102
4-3 結果與討論 103
4-3-1 IPA-SR3之合成途徑與結構鑑定 103
4-3-2 IPA-SR3之光譜特性 108
4-3-2-1紫外光光譜 108
4-3-2-2螢光光光譜 109
4-3-3 IPA-SR3之金屬感測器特性 112
4-3-3-1 IPA-SR3對金屬篩選之螢光光譜 115
4-3-3-2 IPA-SR3對金屬之Stern-Volmer Plot 118
4-3-4 IPA-SR3對金屬離子錯合模式探討 128
4-3-4-1 IPA-SR3與金屬離子錯合之粒徑差異 128
4-3-4-2 IPA-SR3對金屬離子之NMR滴定實驗 132
4-3-4-3 IPA-SR3對金屬離子之DFT理論計算 133
4-4 小結 133
第五章 總結 134
參考文獻 135
期刊著作 146
參考文獻 參考文獻
[1] Z. Mengting, T.A. Kurniawan, Y. Yanping, R. Avtar, M.H.D. Othman, (2020) 2D Graphene oxide (GO) doped p-n type BiOI/Bi2WO6 as a novel composite for photodegradation of bisphenol A (BPA) in aqueous solutions under UV-vis irradiation, Materials Science and Engineering: C, 108 110420.
[2] N.P. Kalogiouri, A. Tsalbouris, A. Kabir, K.G. Furton, V.F. Samanidou, (2020) Synthesis and application of molecularly imprinted polymers using sol–gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water, Microchemical Journal, 157 104965.
[3] S.H. Lopez, J. Dias, H. Mol, A. de Kok, (2020) Selective multiresidue determination of highly polar anionic pesticides in plant-based milk, wine and beer using hydrophilic interaction liquid chromatography combined with tandem mass spectrometry, Journal of Chromatography A, 1625 461226.
[4] A.K. El-Deen, K. Shimizu, (2019) Deep eutectic solvent as a novel disperser in dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFOD) for preconcentration of steroids in water samples: Assessment of the method deleterious impact on the environment using Analytical Eco-Scale and Green Analytical Procedure Index, Microchemical Journal, 149 103988.
[5] M. Şaylan, B.T. Zaman, E. Gülhan Bakırdere, S. Bakırdere, (2020) Determination of trace nickel in chamomile tea and coffee samples by slotted quartz tube-flame atomic absorption spectrometry after preconcentration with dispersive liquid-liquid microextraction method using a Schiff base ligand, Journal of Food Composition and Analysis, 88 103454.
[6] R. Yangang, J. Wang, B. Grosselin, V. Daële, A. Mellouki, (2018) Kinetic and product studies of Cl atoms reactions with a series of branched Ketones, Journal of Environmental Sciences, 71 271-281 .
[7] S. Biswas, R. Mondal, A. Mukherjee, M. Sarkar, R.K. Kole, (2019) Simultaneous determination and risk assessment of fipronil and its metabolites in sugarcane, using GC-ECD and confirmation by GC-MS/MS, Food Chemistry, 272 559-567.
[8] C.A. Valdez, M.K. Marchioretto, R.N. Leif, S. Hok, (2018) Efficient derivatization of methylphosphonic and aminoethylsXfonic acids related to nerve agents simultaneously in soils using trimethyloxonium tetrafluoroborate for their enhanced, qualitative detection and identification by EI-GC–MS and GC–FPD, Forensic Science International, 288 159-168.
[9] P. Wang, M. Rashid, J. Liu, M. Hu, G. Zhong, (2016) Identification of multi-insecticide residues using GC-NPD and the degradation kinetics of chlorpyrifos in sweet corn and soils, Food Chemistry, 212 420-426.
[10] M.M. Issa, S. M. Taha, A.M. El- Marsafy, M.M.H. Khalil, E.H. Ismail, (2020) Acetonitrile-Ethyl acetate based method for the residue analysis of 373 pesticides in beeswax using LC-MS/MS and GC–MS/MS, Journal of Chromatography B, 1145 122106.
[11] E. Alipanahpour Dil, A. Asfaram, A. Goudarzi, E. Zabihi, H. Javadian, (2020) Biocompatible chitosan-zinc oxide nanocomposite based dispersive micro-solid phase extraction coupled with HPLC-UV for the determination of rosmarinic acid in the extracts of medical plants and water sample, International Journal of Biological Macromolecules, 154 528-537.
[12] S. Vazquez Troche, M.S. Garcı́a Falcón, S. González Amigo, M.A. Lage Yusty, J. Simal Lozano, (2000) Enrichment of benzo[a]pyrene in vegetable oils and determination by HPLC-FL, Talanta, 51 1069-1076.
[13] Y. Liu, B. Zhu, M. Xue, Z. Jiang, X. Guo, (2020) Studies on the chiral separation of pheniramine and its enantioselective pharmacokinetics in rat plasma by HPLC-MS/MS, Microchemical Journal, 156 104989.
[14] J.L. Malvar, J.L. Santos, J. Martín, I. Aparicio, E. Alonso, (2020) Comparison of ultrasound-assisted extraction, QuEChERS and selective pressurized liquid extraction for the determination of metabolites of parabens and pharmaceuticals in sludge, Microchemical Journal, 157 104987.
[15] J. Park, S.K. Park, Y.H. Choi, (2019) Environmental pyrethroid exposure and diabetes in U.S. adults, Environmental Research, 172 399-407.
[16] C. Corcellas, E. Eljarrat, D. Barceló, (2015) First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain), Environment International, 75 110-116.
[17] W. Tang, D. Wang, J. Wang, Z. Wu, L. Li, M. Huang, S. Xu, D. Yan, (2018) Pyrethroid pesticide residues in the global environment: An overview, Chemosphere, 191 990-1007.
[18] L. Li, S. Zhou, L. Jin, C. Zhang, W. Liu, (2010) Enantiomeric separation of organophosphorus pesticides by high-performance liquid chromatography, gas chromatography and capillary electrophoresis and their applications to environmental fate and toxicity assays, Journal of Chromatography B, 878 1264-1276.
[19] N.C.P. de Albuquerque, J.V. de Matos, A.R.M. de Oliveira, (2016) In-line coupling of an achiral-chiral column to investigate the enantioselective in vitro metabolism of the pesticide Fenamiphos by human liver microsomes, Journal of Chromatography A, 1467 326-334.
[20] S. Jiménez-Jiménez, N. Casado, M. García, M.L. Marina, (2019) Enantiomeric analysis of pyrethroids and organophosphorus insecticides, Journal of Chromatography A, 1605 360345.
[21] W. Tang, D. Wang, J. Wang, Z. Wu, L. Li, M. Huang, S. Xu, D. Yan, (2018) Pyrethroid pesticide residues in the global environment: An overview, Chemosphere, 191 990-1007.
[22] L.H. Nowell, J.E. Norman, C.G. Ingersoll, P.W. Moran, (2016) Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides, Science of The Total Environment, 550 835-850.
[23] A.M. Saillenfait, D. Ndiaye, J.P. Sabaté, (2015) Pyrethroids: Exposure and health effects – An update, International Journal of Hygiene and Environmental Health, 218 281-292.
[24] N. Lu, X. He, T. Wang, S. Liu, X. Hou, (2018) Magnetic solid-phase extraction using MIL-101(Cr)-based composite combined with dispersive liquid-liquid microextraction based on solidification of a floating organic droplet for the determination of pyrethroids in environmental water and tea samples, Microchemical Journal, 137 449-455.
[25] J.P. dos Anjos, J.B. de Andrade, (2014) Determination of nineteen pesticides residues (organophosphates, organochlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC–MS, Microchemical Journal, 112 119-126.
[26] T.G. Schwanz, C.K. Carpilovsky, G.C.C. Weis, I.H. Costabeber, (2019) Validation of a multi-residue method and estimation of measurement uncertainty of pesticides in drinking water using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, Journal of Chromatography A, 1585 10-18.
[27] X. Yang, H. Zhang, Y. Liu, J. Wang, Y.C. Zhang, A.J. Dong, H.T. Zhao, C.H. Sun, J. Cui, (2011) Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography–mass spectrometry: Determination of 88 pesticides in berries using SPE and GC–MS, Food Chemistry, 127 855-865.
[28] Y. Jabali, M. Millet, M. El-Hoz, (2019) Optimization of a DI-SPME-GC–MS/MS method for multi-residue analysis of pesticides in waters, Microchemical Journal, 147 83-92.
[29] M. Zhang, J. He, Y. Shen, W. He, Y. Li, D. Zhao, S. Zhang, (2018) Application of pseudo-template molecularly imprinted polymers by atom transfer radical polymerization to the solid-phase extraction of pyrethroids, Talanta, 178 1011-1016.
[30] Y. Yamini, M. Safari, (2019) Magnetic Zink-based metal organic framework as advance and recyclable adsorbent for the extraction of trace pyrethroids, Microchemical Journal, 146 134-141.
[31] R. Perestrelo, P. Silva, P. Porto-Figueira, J.A.M. Pereira, C. Silva, S. Medina, J.S. Câmara, (2019) QuEChERS - Fundamentals, relevant improvements, applications and future trends, Analytica Chimica Acta, 1070 1-28.
[32] M.W. Kujawski, Ż. Bargańska, K. Marciniak, E. Miedzianowska, J.K. Kujawski, M. Ślebioda, J. Namieśnik, (2014) Determining pesticide contamination in honey by LC-ESI-MS/MS – Comparison of pesticide recoveries of two liquid–liquid extraction based approaches, LWT - Food Science and Technology, 56 517-523.
[33] M. Arvand, E. Bozorgzadeh, S. Shariati, (2013) Two-phase hollow fiber liquid phase microextraction for preconcentration of pyrethroid pesticides residues in some fruits and vegetable juices prior to gas chromatography/mass spectrometry, Journal of Food Composition and Analysis, 31 275-283.
[34] H. Qian, L. Hu, C. Liu, H. Wang, H. Gao, W. Zhou, (2018) Determination of four pyrethroid insecticides in water samples through membrane emulsification-assisted liquid–liquid microextraction based on solidification of floating organic droplets, Journal of Chromatography A, 1559 86-94.
[35] J.P. dos Anjos, J.B. de Andrade, (2014) Determination of nineteen pesticides residues (organophosphates, organochlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC–MS, Microchemical Journal, 112 119-126.
[36] A. Szarka, D. Turková, S. Hrouzková, (2018) Dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the determination of pesticide residues in nutraceutical drops, Journal of Chromatography A, 1570 126-134.
[37] W. Deng, L. Yu, X. Li, J. Chen, X. Wang, Z. Deng, Y. Xiao, (2019) Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea beverages and fruit juices, Food Chemistry, 274 891-899.
[38] I. Rykowska, J. Ziemblińska, I. Nowak, (2018) Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: A review, Journal of Molecular Liquids, 259 319-339.
[39] M. Torbati, M.A. Farajzadeh, M. Torbati, A.A.A. Nabil, A. Mohebbi, M.R. Afshar Mogaddam, (2018) Development of salt and pH-induced solidified floating organic droplets homogeneous liquid-liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography-mass spectrometry, Talanta, 176 565-572.
[40] A. Marklund, B. Andersson, P. Haglund, (2003) Screening of organophosphorus compounds and their distribution in various indoor environments, Chemosphere, 53 1137-1146.
[41] L. Pang, H. Yang, P. Yang, H. Zhang, J. Zhao, (2017) Trace determination of organophosphate esters in white wine, red wine, and beer samples using dispersive liquid-liquid microextraction combined with ultra-high-performance liquid chromatography–tandem mass spectrometry, Food Chemistry, 229 445-451.
[42] K. Betts, (2008) Does a key PBDE break down in the environment?, Environmental Science and Technology, 42 6781.
[43] H. Wolschke, R. Sühring, Z. Xie, R. Ebinghaus, (2015) Organophosphorus flame retardants and plasticizers in the aquatic environment: A case study of the Elbe River, Germany, Environmental Pollution, 206 488-493.
[44] S. Lee, H.J. Cho, W. Choi, H.B. Moon, (2018) Organophosphate flame retardants (OPFRs) in water and sediment: Occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea, Marine Pollution Bulletin, 130 105-112.
[45] S. Lai, Z. Xie, T. Song, J. Tang, Y. Zhang, W. Mi, J. Peng, Y. Zhao, S. Zou, R. Ebinghaus, (2015) Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea, Chemosphere, 127 195-200.
[46] T. Reemtsma, J.B. Quintana, R. Rodil, M. Garcı´a-López, I. Rodrı´guez, (2008) Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate, TrAC Trends in Analytical Chemistry, 27 727-737.
[47] H. Matsukami, N.M. Tue, G. Suzuki, M. Someya, L.H. Tuyen, P.H. Viet, S. Takahashi, S. Tanabe, H. Takigami, (2015) Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs, Science of The Total Environment, 514 492-499.
[48] S. Mizouchi, M. Ichiba, H. Takigami, N. Kajiwara, T. Takamuku, T. Miyajima, H. Kodama, T. Someya, D. Ueno, (2015) Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses, Chemosphere, 123 17-25.
[49] A.A. Peverly, C. O′Sullivan, L.Y. Liu, M. Venier, A. Martinez, K.C. Hornbuckle, R.A. Hites, (2015) Chicago′s Sanitary and Ship Canal sediment: Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, brominated flame retardants, and organophosphate esters, Chemosphere, 134 380-386.
[50] M. Behl, J.R. Rice, M.V. Smith, C.A. Co, M.F. Bridge, J.H. Hsieh, J.H. Freedman, W.A. Boyd, Editor’s Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditiselegans, Toxicological Sciences, 154 241-252.
[51] L. Pang, Y. Yuan, H. He, K. Liang, H. Zhang, J. Zhao, (2016) Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China, Chemosphere, 152 245-251.
[52] L.V. Dishaw, C.M. Powers, I.T. Ryde, S.C. Roberts, F.J. Seidler, T.A. Slotkin, H.M. Stapleton, (2011) Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells, Toxicology and Applied Pharmacology, 256 281-289.
[53] J.D. Meeker, H.M. Stapleton, (2010) House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters, Environ Health Perspectives, 118 318-323.
[54] M. Bastiaensen, N. Van den Eede, G. Su, R.J. Letcher, H.M. Stapleton, (2019) A. Covaci, Towards establishing indicative values for metabolites of organophosphate ester contaminants in human urine, Chemosphere, 236 124348.
[55] I. Kosarac, C. Kubwabo, W.G. Foster, (2016) Quantitative determination of nine urinary metabolites of organophosphate flame retardants using solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS), Journal of Chromatography B, 1014 24-30.
[56] M. Bastiaensen, Y. Ait Bamai, A. Araki, N. Van den Eede, T. Kawai, T. Tsuboi, R. Kishi, (2019) A. Covaci, Biomonitoring of organophosphate flame retardants and plasticizers in children: Associations with house dust and housing characteristics in Japan, Environmental Research, 172 543-551.
[57] H. Kim, C.M. Rebholz, E. Wong, J.P. Buckley, (2020) Urinary organophosphate ester concentrations in relation to ultra-processed food consumption in the general US population, Environmental Research, 182 109070.
[58] Y. Zhang, H. Su, M. Ya, J. Li, S.H. Ho, L. Zhao, K. Jian, R.J. Letcher, G. Su, (2019) Distribution of flame retardants in smartphones and identification of current-use organic chemicals including three novel aryl organophosphate esters, Science of The Total Environment, 693 133654.
[59] B. Du, Y. Zhang, H. Chen, M. Shen, W. Zhou, L. Zeng, (2019) Development and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous determination of 17 traditional and emerging aryl organophosphate esters in indoor dust, Journal of Chromatography A, 1603 199-207.
[60] Y.C. Tsao, Y.C. Wang, S.F. Wu, W.H. Ding, (2011) Microwave-assisted headspace solid-phase microextraction for the rapid determination of organophosphate esters in aqueous samples by gas chromatography-mass spectrometry, Talanta, 84 406-410.
[61] A. Naccarato, A. Tassone, S. Moretti, R. Elliani, F. Sprovieri, N. Pirrone, A. Tagarelli, (2018) A green approach for organophosphate ester determination in airborne particulate matter: Microwave-assisted extraction using hydroalcoholic mixture coupled with solid-phase microextraction gas chromatography-tandem mass spectrometry, Talanta, 189 657-665.
[62] S.P. Chu, W.C. Tseng, P.H. Kong, C.K. Huang, J.H. Chen, P.S. Chen, S.D. Huang, (2015) Up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the determination of fungicides in wine, Food Chemistry, 185 377-382.
[63] R. Frizzarin, F. Maya Alejandro, J. Estela, V. Cerdà, (2016) Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages, Food Chemistry, 212 759-767.
[64] S. Li, L. Hu, K. Chen, H. Gao, (2015) Extensible automated dispersive liquid–liquid microextraction, Analytica Chimica Acta, 872 46-54.
[65] K. Fikarová, B. Horstkotte, H. Sklenářová, F. Švec, P. Solich, (2019) Automated continuous-flow in-syringe dispersive liquid-liquid microextraction of mono-nitrophenols from large sample volumes using a novel approach to multivariate spectral analysis, Talanta, 202 11-20.
[66] F. Maya, B. Horstkotte, J.M. Estela, V. Cerdà, (2014) Automated in-syringe dispersive liquid-liquid microextraction, TrAC Trends in Analytical Chemistry, 59 1-8.
[67] V. Andruch, C.C. Acebal, J. Škrlíková, H. Sklenářová, P. Solich, I.S. Balogh, F. Billes, L. Kocúrová, (2012) Automated on-line dispersive liquid–liquid microextraction based on a sequential injection system, Microchemical Journal, 100 77-82.
[68] A. Shishov, P. Terno, L. Moskvin, A. Bulatov, (2020) In-syringe dispersive liquid-liquid microextraction using deep eutectic solvent as disperser: Determination of chromium (VI) in beverages, Talanta, 206 120209.
[69] M. Roosta, M. Ghaedi, A. Daneshfar, (2014) Optimisation of ultrasound-assisted reverse micelles dispersive liquid-liquid micro-extraction by Box-Behnken design for determination of acetoin in butter followed by high performance liquid chromatography, Food Chemistry, 161 120-126.
[70] M. Carabajal, C.M. Teglia, S. Cerutti, M.J. Culzoni, H.C. Goicoechea, (2020) Applications of liquid-phase microextraction procedures to complex samples assisted by response surface methodology for optimization, Microchemical Journal, 152 104436.
[71] L. Wang, B. Chen, P. Peng, W. Hu, Z. Liu, X. Pei, W. Zhao, C. Zhang, L. Li, W. Huang, (2017) Fluorescence imaging mitochondrial copper(II) via photocontrollable fluorogenic probe in live cells, Chinese Chemical Letters, 28 1965-1968.
[72] F.Y. Wu, S.G. Cao, C.X. Xie, (2012) A highly selective chemosensor for copper ion based on ICT fluorescence, Chinese Chemical Letters, 23 607-610.
[73] E.L. Que, D.W. Domaille, C.J. Chang, (2008) Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging, Chemical Reviews, 108 1517-1549.
[74] L. Qu, C. Yin, F. Huo, Y. Zhang, Y. Li, (2013) A commercially available fluorescence chemosensor for copper ion and its application in bioimaging, Sensors and Actuators B: Chemical, 183 636-640.
[75] W. Zhang, J. Wei, H. Zhu, K. Zhang, F. Ma, Q. Mei, Z. Zhang, S. Wang, (2012) Self-assembled multilayer of alkyl graphene oxide for highly selective detection of copper(II) based on anodic stripping voltammetry, Journal of Materials Chemistry, 22 22631-22636.
[76] T. Branch, P. Girvan, M. Barahona, L. Ying, (2014) Introduction of a Fluorescent Probe to Amyloid-β to Reveal Kinetic Insights into Its Interactions with Copper(II), Angewandte Chemie International Edition, 54 1227-1230
[77] Y. Yang, F. Huo, C. Yin, Y. Chu, J. Chao, Y. Zhang, J. Zhang, S. Li, H. Lv, A. Zheng, D. Liu, (2013) Combined spectral experiment and theoretical calculation to study the chemosensors of copper and their applications in anion bioimaging, Sensors and Actuators B: Chemical, 177 1189-1197.
[78] J. Makowska, K. Żamojć, D. Wyrzykowski, W. Żmudzińska, D. Uber, M. Wierzbicka, W. Wiczk, L. Chmurzyński, (2016) Probing the binding of Cu2+ ions to a fragment of the Aβ(1–42) polypeptide using fluorescence spectroscopy, isothermal titration calorimetry and molecular dynamics simulations, Biophysical Chemistry, 216 44-50.
[79] E. Tiffany-Castiglioni, S. Hong, Y. Qian, (2011) Copper handling by astrocytes: Insights into neurodegenerative diseases, International Journal of Developmental Neuroscience, 29 811-818.
[80] K. Babayeva, S. Demir, M. Andac, (2017) A novel spectrophotometric method for the determination of copper ion by using a salophen ligand, N,N’-disalicylidene-2,3-diaminopyridine, Journal of Taibah University for Science, 11 808-814.
[81] M.J. Coffey, T.D. Jickells, (1995) Ion Chromatography-Inductively Coupled Plasma-Atomic Emission Spectrometry (IC-ICP-AES) as a Method for Determining Trace Metals in Estuarine Water, Estuarine, Coastal and Shelf Science, 40 379-386.
[82] D. Stanković, G. Roglic, J. Mutic, I. Andjelkovic, M. Markovic, D. Manojlovic, (2011) Determination of Copper in Water by Anodic Stripping Voltammetry Using Cu-DPABA–NA/GCE Modified Electrode, International Journal of Electrochemical Science, 6 5617-5625.
[83] J. Cabon, (2002) Determination of Cu and Mn in seawater by graphite furnace atomic absorption spectrometry with the use of hydrofluoric acid as a chemical modifier, Spectrochimica Acta Part B-Atomic Spectroscopy, 57 939-950.
[84] C. Lei, Z. Wang, Z. Nie, H. Deng, H. Hu, Y. Huang, S. Yao, (2015) Resurfaced fluorescent protein as a sensing platform for label-free detection of copper(II) ion and acetylcholinesterase activity, Analytical Chemistry, 87 1974-1980.
[85] L.H. Jin, C.S. Han, (2014) Ultrasensitive and Selective Fluorimetric Detection of Copper Ions Using Thiosulfate-Involved Quantum Dots, Analytical Chemistry, 86 7209-7213
[86] J. Jo, H.Y. Lee, W. Liu, A. Olasz, C.H. Chen, D. Lee, (2012) Reactivity-based detection of copper(II) ion in water: oxidative cyclization of azoaromatics as fluorescence turn-on signaling mechanism, Journal of the American Chemical Society, 134 16000-16007.
[87] M. Gao, S. Han, Y. Hu, L. Zhang, (2016) Enhanced Fluorescence in Tetraylnitrilomethylidyne-Hexaphenyl Derivative-Functionalized Periodic Mesoporous Organosilicas for Sensitive Detection of Copper(II), The Journal of Physical Chemistry C, 120 9299-9307.
[88] S. Yang, W. Jiang, F. Zhao, L. Xu, Y. Xu, B. Gao, H. Sun, L. Du, Y. Tang, F. Cao, A highly sensitive and selective fluorescent sensor for detection of copper ions based on natural Isorhamnetin from Ginkgo leaves, Sensors and Actuators B: Chemical, 236 386-391.
[89] Y. Zhou, Z. Ma, (2016) A novel fluorescence enhanced route to detect copper(II) by click chemistry-catalyzed connection of Au@SiO2 and carbon dots, Sensors and Actuators B: Chemical, 233 426-430.
[90] J. Chen, Y. Li, K. Lv, W. Zhong, H. Wang, Z. Wu, P. Yi, J. Jiang, (2016) Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells, Sensors and Actuators B: Chemical, 224 298-306.
[91] Z.C. Liu, J.W. Qi, C. Hu, L. Zhang, W. Song, R.P. Liang, J.D. Qiu, (2015) Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions, Analytica Chimica Acta, 895 95-103.
[92] T. Liu, Y. Luo, L. Kong, J. Zhu, W. Wang, L. Tan, (2016) Voltammetric detection of Cu2+ using poly(azure A) modified glassy carbon electrode based on mimic peroxidase behavior of copper, Sensors and Actuators B: Chemical, 235 568-574.
[93] K.M. Lee, W.Y. Cheng, C.Y. Chen, J.J. Shyue, C.C. Nieh, C.F. Chou, J.R. Lee, Y.Y. Lee, C.Y. Cheng, S.Y. Chang, T.C. Yang, M.C. Cheng, B.Y. Lin, (2013) Excitation-dependent visible fluorescence in decameric nanoparticles with monoacylglycerol cluster chromophores, Nature Communications, 4 1544-1551.
指導教授 王家麟 徐永源(Jia-Lin Wang Youn-Yuen Shu) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明