參考文獻 |
參考文獻
[1] S. Ortaboy, J.P. Alper, F. Rossi, G. Bertoni, G. Salviati, C. Carraro, R. Maboudian. "MnOx-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors". Energy & Environmental Science,10 (2017) 1505-1516.
[2] P. Lu, P. Ohlckers, L. Müller, S. Leopold, M. Hoffmann, K. Grigoras, J. Ahopelto, M. Prunnila, X. Chen. "Nano fabricated silicon nanorod array with titanium nitride coating for on-chip supercapacitors". Electrochemistry Communications,70 (2016) 51-55.
[3] C. Wang, F. Luo, H. Lu, B. Liu, G. Chu, B. Quan, J. Li, C. Gu, H. Li, L. Chen. "Side-by-side observation of the interfacial improvement of vertical graphene-coated silicon nanocone anodes for lithium-ion batteries by patterning technology". Nanoscale,9 (2017) 17241-17247.
[4] Y.C. Lai, H.C. Ho, B.W. Shih, F.Y. Tsai, C.H. Hsueh. "High performance and reusable SERS substrates using Ag/ZnO heterostructure on periodic silicon nanotube substrate". Applied Surface Science,439 (2018) 852-858.
[5] X. Qin, Z. Xia, Y. Wu, J. Zhou, Z. Zhang. "Enhanced light absorption in perpendicular elliptical silicon nanocone array for solar cells". Appl Opt,56 (2017) 2307-2313.
[6] G. Ma, R. Du, Y.N. Cai, C. Shen, X. Gao, Y. Zhang, F. Liu, W. Shi, W. Du, Y. Zhang. "Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides". Solar Energy Materials and Solar Cells,193 (2019) 163-168.
[7] V. Sessi, M. Simon, H. Mulaosmanovic, D. Pohl, M. Loeffler, T. Mauersberger, F.P. Fengler, T. Mittmann, C. Richter, S. Slesazeck. "A Silicon Nanowire Ferroelectric Field‐Effect Transistor". Advanced Electronic Materials,6 (2020) 1901244.
[8] S. Zafar, C. D′Emic, A. Jagtiani, E. Kratschmer, X. Miao, Y. Zhu, R. Mo, N. Sosa, H. Hamann, G. Shahidi, H. Riel. "Silicon nanowire field effect transistor sensors with minimal sensor-to-sensor variations and enhanced sensing characteristics". ACS Nano,12 (2018) 6577-6587.
[9] C. Wang, F. Luo, H. Lu, X. Rong, B. Liu, G. Chu, Y. Sun, B. Quan, J. Zheng, J. Li, C. Gu, X. Qiu, H. Li, L. Chen. "A well-defined silicon nanocone-carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-Ion batteries". ACS Applied Materials & Interfaces,9 (2017) 2806-2814.
[10] A. Krause, O. Tkacheva, A. Omar, U. Langklotz, L. Giebeler, S. Dörfler, F. Fauth, T. Mikolajick, W.M. Weber. "In situ raman spectroscopy on silicon nanowire anodes Integrated in lithium Ion batteries". Journal of The Electrochemical Society,166 (2019) A5378-A5385.
[11] S.A. Guerrera, A.I. Akinwande. "Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates". Nanotechnology,27 (2016) 295302.
[12] Y.M. Chang, P.H. Kao, H.M. Tai, H.W. Wang, C.M. Lin, H.Y. Lee, J.Y. Juang. "Enhanced field emission characteristics in metal-coated Si-nanocones". Phys Chem Chem Phys,15 (2013) 10761-10766.
[13] G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, A. Trifonov, I. Andreeva, O. Ignatenko, A. Egorov, M. Rubtsova. "Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen". Biosens Bioelectron,88 (2017) 283-289.
[14] K. Wang, H. Hu, S. Lu, M. Jin, Y. Wang, T. He. "Visible and near-infrared dual-band photodetector based on gold–silicon metamaterial". Applied Physics Letters,116 (2020).
[15] I. Mihalache, A. Radoi, R. Pascu, C. Romanitan, E. Vasile, M. Kusko. "Engineering graphene quantum dots for enhanced ultraviolet and visible light p-Si nanowire-based photodetector". ACS Applied Materials & Interfaces,9 (2017) 29234-29247.
[16] J.Q. Liu, Y. Gao, G.A. Wu, X.W. Tong, C. Xie, L.B. Luo, L. Liang, Y.C. Wu. "Silicon/perovskite core-shell heterojunctions with light-trapping effect for sensitive self-driven near-Infrared photodetectors". ACS Applied Materials & Interfaces,10 (2018) 27850-27857.
[17] C.Y. Wu, Z.Q. Pan, Y.Y. Wang, C.W. Ge, Y.Q. Yu, J.Y. Xu, L. Wang, L.B. Luo. "Core–shell silicon nanowire array–Cu nanofilm schottky junction for a sensitive self-powered near-infrared photodetector". Journal of Materials Chemistry C,4 (2016) 10804-10811.
[18] Y. Zhai, Y. Li, J. Ji, Z. Wu, Q. Wang. "Hot electron generation in silicon micropyramids covered with nanometer-thick gold films for near-infrared photodetectors". ACS Applied Nano Materials,3 (2020) 149-155.
[19] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji, C. Ye. "Flexible Si/PEDOT:PSS hybrid solar cells". Nano Research,8 (2015) 3141-3149.
[20] P. Campbell, M.A. Green. "Light trapping properties of pyramidally textured surfaces". Journal of Applied Physics,62 (1987) 243-259.
[21] W.C. Hsu, J.K. Tong, M.S. Branham, Y. Huang, S. Yerci, S.V. Boriskina, G. Chen. "Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells". Optics Communications,377 (2016) 52-58.
[22] W. Liu, S. Zhang, Y. Liu, X. Wang, F. Yang. "Double sided nanopyramid arrays for broad spectrum absorption enhancement in ultrathin-film solar cells". 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC); 2016: IEEE.
[23] X. Tan, W. Yan, Y. Tu, C. Deng. "Small pyramidal textured ultrathin crystalline silicon solar cells with double-layer passivation". Opt Express,25 (2017) 14725-14731.
[24] S. Zhang, M. Liu, W. Liu, Z. Li, Y. Liu, X. Wang, F. Yang. "High-efficiency photon capturing in ultrathin silicon solar cells with double-sided skewed nanopyramid arrays". Journal of Optics,19 (2017).
[25] E. Yablonovitch. "Statistical ray optics". Journal of the Optical Society of America,72 (1982) 899-907.
[26] L. Guan, G. Shen, Y. Liang, F. Tan, X. Xu, X. Tan, X. Li. "Double-sided pyramid texturing design to reduce the light escape of ultrathin crystalline silicon solar cells". Optics and Laser Technology,120 (2019).
[27] D. Yu, Y. Xing, Q. Hang, H. Yan, J. Xu, Z. Xi, S.-Q. Feng. "Controlled growth of oriented amorphous silicon nanowires via a solid–liquid–solid (SLS) mechanism". Physica E: Low-dimensional Systems and Nanostructures,9 (2001) 305-309.
[28] E.K. Lee, B.L. Choi, Y.D. Park, Y. Kuk, S.Y. Kwon, H.J. Kim. "Device fabrication with solid-liquid-solid grown silicon nanowires". Nanotechnology,19 (2008) 185701.
[29] J. Westwater. "Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,15 (1997).
[30] O. Gunawan, S. Guha. "Characteristics of vapor–liquid–solid grown silicon nanowire solar cells". Solar Energy Materials and Solar Cells,93 (2009) 1388-1393.
[31] R.Q. Zhang, Y. Lifshitz, S.T. Lee. "Oxide-assisted growth of semiconducting nanowires". Advanced Materials,15 (2003) 635-640.
[32] Y. Yao, F. Li, S.T. Lee. "Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts". Chemical Physics Letters,406 (2005) 381-385.
[33] M.L. Zhang, K.Q. Peng, X. Fan, J.S. Jie, R.Q. Zhang, S.T. Lee, N.B. Wong. "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching". The Journal of Physical Chemistry C,112 (2008) 4444-4450.
[34] Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo, Y. Shi. "Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration". Nanoscale research letters,7 (2012) 663.
[35] L. Liu, F. Wu, D. Xu, N. Li, N. Lu. "Space confined electroless deposition of silver nanoparticles for highly-uniform SERS detection". Sensors and Actuators B: Chemical,255 (2018) 1401-1406.
[36] L.W. Veldhuizen, W.J.C. Vijselaar, H.A. Gatz, J. Huskens, R.E.I. Schropp. "Textured and micropillar silicon heterojunction solar cells with hot-wire deposited passivation layers". Thin Solid Films,635 (2017) 66-72.
[37] Y. Zhang, Z. Fan, W. Zhang, Q. Ma, Z. Jiang, D. Ma. "High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles". AIP Advances,8 (2018).
[38] J. Zhu, Z. Yu, G.F. Burkhard, C.M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui. "Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays". Nano Lettersers,9 (2009) 279-282.
[39] Y.C. Lee, C.C. Chang, Y.Y. Chou. "Fabrication of broadband anti-reflective sub-micron structures using polystyrene sphere lithography on a Si substrate".Photonics and Nanostructures - Fundamentals and Applications,12 (2014) 16-22.
[40] J.Y. Jung, Z. Guo, S.W. Jee, H.D. Um, K.T. Park, J.H. Lee. "A strong antireflective solar cell prepared by tapering silicon nanowires". Optics Express,18 (2010) A286-A292.
[41] H. Lin, H.Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J.C. Ho, C.Y. Wong. "Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping". Journal of Materials Chemistry A,1 (2013).
[42] T. Shimizu, N. Tanaka, Y. Tada, Y. Hara, N. Nakamura, J. Taniuchi, K. Takase, T. Ito, S. Shingubara. "Fabrication of nanocone arrays by two step metal assisted chemical etching method". Microelectronic Engineering,153 (2016) 55-59.
[43] F. Teng, N. Li, D. Xu, D. Xiao, X. Yang, N. Lu. "Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching". Nanoscale,9 (2017) 449-453.
[44] M.L. Brongersma, N.J. Halas, P. Nordlander. "Plasmon-induced hot carrier science and technology". Nature Nanotechnology,10 (2015) 25-34.
[45] Y. Song, T. Liu, S. Liu, J. Huang, J. Li, C. Tian, T. Yu, Y. He, Y. Liu, Z. Zhong. "A plasmon-enhanced broadband absorber fabricated by black silicon with self-assembled gold nanoparticles". Journal of Materials Science: Materials in Electronics,31 (2020) 4696-4701.
[46] C. Clavero. "Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices". Nature Photonics,8 (2014) 95-103.
[47] W. Li, J.G. Valentine. "Harvesting the loss: surface plasmon-based hot electron photodetection". Nanophotonics,6 (2017) 177-191.
[48] Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, K.T. Yong. "Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor". Scientific Reports,6 (2016) 28190.
[49] G. Erturk Bergdahl, T. Andersson, M. Allhorn, S. Yngman, R. Timm, R. Lood. "In Vivo Detection and Absolute Quantification of a Secreted Bacterial Factor from Skin Using Molecularly Imprinted Polymers in a Surface Plasmon Resonance Biosensor for Improved Diagnostic Abilities". ACS Sensors,4 (2019) 717-725.
[50] R. Liu, Q. Wang, Q. Li, X. Yang, K. Wang, W. Nie. "Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy". Biosensors and Bioelectronics,87 (2017) 433-438.
[51] X. Yang, H. Zhong, Y. Zhu, J. Shen, C. Li. "Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays". Dalton Transactions,42 (2013) 14324-14330.
[52] Y. Li, J. Dykes, T. Gilliam, N. Chopra. "A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles". Nanoscale,9 (2017) 5263-5272.
[53] S. Chakraborti, R.N. Basu, S.K. Panda. "Vertically aligned silicon nanowire array decorated by Ag or Au nanoparticles as SERS substrate for bio-molecular detection". Plasmonics,13 (2017) 1057-1080.
[54] G. Xu, R. Lu, J. Liu, H.Y. Chiu, R. Hui, J.Z. Wu. "Photodetection based on Ionic liquid gated plasmonic Ag nanoparticle/graphene nanohybrid field effect transistors". Advanced Optical Materials,2 (2014) 729-736.
[55] C. Peng, W. Wang, W. Zhang, Y. Liang, L. Zhuo. "Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination". Applied Surface Science,420 (2017) 286-295.
[56] H. Li, Z. Li, Y. Yu, Y. Ma, W. Yang, F. Wang, X. Yin, X. Wang. "Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO2 nanorod architectures". The Journal of Physical Chemistry C,121 (2017) 12071-12079.
[57] X. Wang, K.Q. Peng, Y. Hu, F.Q. Zhang, B. Hu, L. Li, M. Wang, X.M. Meng, S.T. Lee. "Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation". Nano Letters,14 (2014) 18-23.
[58] H. Chen, Q. Zhao, Y. Wang, S. Mu, H. Cui, J. Wang, T. Kong, X. Du. "Near-infrared light-driven controllable motions of gold-hollow-microcone array". ACS Applied Materials & Interfaces,11 (2019) 15927-15935.
[59] A. Roy, A. Maiti, T.K. Chini, B. Satpati. "Annealing induced morphology of silver nanoparticles on pyramidal silicon surface and their application to surface-enhanced raman scattering". ACS Applied Materials & Interfaces,9 (2017) 34405-34415.
[60] J. Yin, X. Qi, L. Yang, G. Hao, J. Li, J. Zhong. "A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays". Electrochimica Acta,56 (2011) 3884-3889.
[61] J. Wu, Y. Du, C. Wang, S. Bai, T. Zhang, T. Chen, A. Hu. "Reusable and long-life 3D Ag nanoparticles coated Si nanowire array as sensitive SERS substrate". Applied Surface Science,494 (2019) 583-590.
[62] P.S. Priambodo, N.R. Poespawati, D. Hartanto. Solar Cell. Solar Cells-Silicon Wafer-Based Technologies: IntechOpen; 2011.
[63] S. Parasuraman. "NOC: Fundamentals of electronic materials and devices". (2016).
[64] B. Wang, Y. Zhu, J. Dong, J. Jiang, Q. Wang, S. Li, X. Wang. "Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication". Nano Energy,70 (2020) 104544.
[65] B. Chitara, L. Panchakarla, S. Krupanidhi, C. Rao. "Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons". Advanced Materials,23 (2011) 5419-5424.
[66] L.H. Zeng, M.Z. Wang, H. Hu, B. Nie, Y.Q. Yu, C.Y. Wu, L. Wang, J.G. Hu, C. Xie, F.X. Liang. "Monolayer graphene/germanium schottky junction as high-performance self-driven infrared light photodetector". ACS Applied Materials & Interfaces,5 (2013) 9362-9366.
[67] X. Wang, Z. Cheng, K. Xu, H.K. Tsang, J.B. Xu. "High-responsivity graphene/silicon-heterostructure waveguide photodetectors". Nature Photonics,7 (2013) 888-891.
[68] H. Ahmad, H. Rashid, M.F. Ismail, K. Thambiratnam. "Fabrication and characterization of tungsten disulphide/silicon heterojunction photodetector for near infrared illumination". Optik,185 (2019) 819-826.
[69] Y. Zhao, L. Li, S. Liu, J. Wang, J. Xu, Y. Shi, K. Chen, P.R. i Cabarrocas, L. Yu. "Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes". Nanotechnology,31 (2020) 145602.
[70] J. Deng, Z. Guo, Y. Zhang, X. Cao, S. Zhang, Y. Sheng, H. Xu, W. Bao, J. Wan. "MoS 2/Silicon-on-insulator heterojunction field-effect-transistor for high-performance photodetection". IEEE Electron Device Letters,40 (2019) 423-426.
[71] V. Dhyani, S. Das. "High-speed scalable silicon-MoS2 P-N heterojunction photodetectors". Scientific reports,7 (2017) 44243.
[72] E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, X. Li. "In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared". ACS photonics,6 (2019) 565-572.
[73] P. Xiao, J. Mao, K. Ding, W. Luo, W. Hu, X. Zhang, X. Zhang, J. Jie. "Solution‐processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra‐broadband photodetection". Advanced Materials,30 (2018) 1801729.
[74] C. Xie, L. Zeng, Z. Zhang, Y.H. Tsang, L. Luo, J.H. Lee. "High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate". Nanoscale,10 (2018) 15285-15293.
[75] Z. Lou, L. Zeng, Y. Wang, D. Wu, T. Xu, Z. Shi, Y. Tian, X. Li, Y.H. Tsang. "High-performance MoS 2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared". Optics letters,42 (2017) 3335-3338.
[76] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, Y. Tu. "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection". Nanotechnology,28 (2017) 275202.
[77] Z. Yang, K. Du, H. Wang, F. Lu, Y. Pang, J. Wang, X. Gan, W. Zhang, T. Mei, S.J. Chua. "Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure". Nanotechnology,30 (2019) 075204.
[78] W. Chen, T. Kan, Y. Ajiki, K. Matsumoto, I. Shimoyama. "NIR spectrometer using a schottky photodetector enhanced by grating-based SPR". Optics Express,24 (2016) 25797-25804.
[79] C. Xie, B. Nie, L. Zeng, F.X. Liang, M.Z. Wang, L. Luo, M. Feng, Y. Yu, C.Y. Wu, Y. Wu. "Core–shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors". Acs Nano,8 (2014) 4015-4022.
[80] Y. Cao, J. Zhu, J. Xu, J. He, J.L. Sun, Y. Wang, Z. Zhao. "Ultra‐broadband photodetector for the visible to terahertz range by self‐assembling reduced graphene oxide‐silicon nanowire array heterojunctions". Small,10 (2014) 2345-2351.
[81] L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S.T. Lee. "MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high‐detectivity, self‐driven visible–near infrared photodetectors". Advanced Functional Materials,25 (2015) 2910-2919.
[82] C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai, W. Xie. "Self-Powered, High-Speed and Visible–Near Infrared Response of MoO3–x/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering". ACS Applied Materials & Interfaces,7 (2015) 25981-25990. |