博碩士論文 107223022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.218.184.214
姓名 孫庭謙(Ting-Qian Sun)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成中空類沸石咪唑骨架材料及空間侷限性對於酵素活性影響之研究
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 大多數固定化酵素由於材料和載體可能影響其結構變化、底物的擴散性、阻礙底物活性位點結合等等,其活性常低於未固定化之酵素。因此,具有可調性孔洞又能保護酵素避免受外界失活物質傷害的金屬有機骨架材料 (Metal-organic Frameworks, MOFs) 則替酵素固定化帶來新的發展可能。而本實驗室於2017年發表在JACS 的文章中,提出以原位創新合成方法 (de novo) 進行類沸石咪唑骨架 (Zeolitic imidazolate frameworks) 材料封裝酵素時,材料的空間限制會對酵素產生侷限性 (Spatial confinement) 之理論。同時利用尿素具有讓蛋白質結構展開而失去活性的特性,發現此材料酵素生物複合體因為侷限效應,在高濃度尿素下依然保有生物活性。為了更進一步探討材料的空間限制對於酵素活性表現的影響,如何開發具有保護功能又不會使得酵素自由度受限的材料,便成為一個重要的課題,而中空材料其內部空腔有機會解決空間限制對酵素活性的影響,因此本篇研究選擇中空金屬有機骨架材料作為研究模板。本研究利用不同的合成方法,合成中空(Hollow) 的類沸石咪唑骨架材料 Hollow ZIF-8以及 HZIF-90@ZnTA 並將酵素封裝於其中,探討酵素因空間侷限性減少所造成的活性變化,並比較兩者實驗結果。此外本研究參考最近文獻發表實驗過程,也成功在10分鐘之內利用單寧酸蝕刻,快速的製作出新型中空類沸石咪唑骨架材料 CAT@HZIF-90@ZnTA ,此研究成果結果或許能對於後續研究中空材料以及空間侷限性和酵素活性之間的關係提供一個嶄新的研究平台。
摘要(英) Immobilized enzymes usually showed lower enzymatic activity than free ones after applying for additional materials or supports, which might influence substrates diffusion, active sites accessibility, subunit dissociation, conformational change, especially volume-confined immobilization. It is necessary to find the potential material which overcomes the above-mentioned shortcomings and provides shell protection for embedded biomolecules to against external denaturing agents. Therefore, metal-organic frameworks (MOFs) with tunable porosity, and variable internal surface property for a targeted application, might be a suitable candidate for advanced enzyme immobilization.
Recently, we reported a paper regrading an additional strength of the de novo approach by demonstrating that embedded enzymes in metal-organic frameworks (MOFs) via de novo approach remain biological functions under a wider range of reaction conditions such as urea. The enhanced stability of the of enzyme molecules arises from the confinement effects provided by MOF structure. However, the enzymatic activity is not as well as the activity of free enzymes, which might be caused by the influence of spatial confinement on the enzymatic functionality.
In order to further investigate the influence of spatial confinement on the enzymatic functionality, herein, we synthesized the new hollow structure of Zeolitic imidazolate frameworks (Hollow ZIF-8 and HZIF-90@ZnTA) by using a modified approach based on a recent report , which embedded enzymes inside of void structures that mimic cytoplasmic conditions with less restricted environment. Accordingly, this part work may contribute to investigate the hollow structure material and the influence of spatial confinement on the enzymatic functionality.
關鍵字(中) ★ 金屬有機骨架材料
★ 類沸石咪唑骨架材料
★ 中空類沸石咪唑骨架材料
★ 酵素
★ 酵素活性
關鍵字(英)
論文目次 中文摘要 I
ABSTRACT II
目錄 III
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-1-1 簡介 1
1-1-2 類沸石咪唑骨架材料 4
1-1-3 類沸石咪唑骨架材料-8/-67/-90 5
1-2 酵素及酵素固定化 8
1-2-1 簡介 8
1-2-2 過氧化氫酶(Catalase, CAT) 10
1-2-3 胰凝乳蛋白酶(Chymotrypsin, CTRY) 11
1-3 研究動機與目的 12
第二章 實驗部分 13
2-1 實驗藥品 13
2-2 實驗儀器 15
2-3 實驗儀器原理 16
2-3-1 X 射線粉末繞射儀 (Powder X-ray Diffractometer, PXRD) 16
2-3-2 場發掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope, SEM) 17
2-3-3 穿透式電子顯微鏡 (Transition Electron Microscope, TEM) 19
2-3-4 紫外/可見光分光光譜儀 (UV/Vis Spectrophotometer) 19
2-3-5 微孔洞及表面積分析儀 (Micropore Size and Surface Area Analyzer) 20
2-3-6 熱重分析儀 (Thermogravimetric Analyzer, TGA) 22
2-4 實驗步驟 23
2-4-1 ZIF-67 包覆於 ZIF-8 雙層材料之合成 23
2-4-2 中空ZIF-67@ZIF-8 材料之合成 23
2-4-3 胰凝乳蛋白酶包覆於 ZIF-67 與 ZIF-8 雙層結構之合成 24
2-4-4 胰凝乳蛋白酶包覆於中空 ZIF-67@ZIF-8 之合成 24
2-4-5 過氧化氫酶包覆於 ZIF-90 之合成 25
2-4-6 胰凝乳蛋白酶包覆於 ZIF-90 之合成 25
2-4-7 過氧化氫酶/胰凝乳蛋白酶包覆於中空 ZIF-90 之合成 26
2-4-8 材料酵素包覆量之測定 27
2-4-9 過氧化氫酶活性之檢測 28
2-4-10 胰凝乳蛋白酶活性之檢測 29
2-4-11 過氧化氫酶/胰凝乳蛋白酶在尿素環境下之活性檢測 30
第三章 結果與討論 31
3-1 CTRY@ZIF-67@ZIF-8 之雙層結構材料鑑定與活性實驗 31
3-1-1 CTRY@ZIF-67@ZIF-8之X射線粉末繞射儀圖譜分析 31
3-1-2 CTRY@ZIF-67@ZIF-8之穿透式電子顯微鏡影像分析 32
3-1-3 CTRY@ZIF-67@ZIF-8中空材料之活性比較 33
3-2 CAT@HZIF-90@ZnTA 之中空結構材料鑑定與活性實驗 34
3-2-1 CAT@HZIF-90@ZnTA 之X射線粉末繞射儀圖譜分析 34
3-2-2 CAT@HZIF-90@ZnTA 之掃描式電子顯微鏡影像分析 35
3-2-3 CAT@HZIF-90@ZnTA 之穿透式電子顯微鏡影像分析 36
3-2-4 CAT@HZIF-90@ZnTA之氮氣等溫吸脫附實驗分析 37
3-2-5 CAT@HZIF-90@ZnTA之熱重分析實驗 39
3-2-6 CAT@HZIF-90@ZnTA 材料之活性比較 40
3-2-7 CAT@HZIF-90@ZnTA 材料在尿素環境下之活性比較 41
3-2-8 過氧化氫酶在酸性環境下之活性比較 42
3-2-9 材料對於過氧化氫消耗之活性比較 43
3-2-10 CAT@HZIF-90@ZnTA 有無使用針筒過濾器之活性比較 44
3-2-11 CAT@HZIF-90@ZnTA 材料之活性比較(使用針筒過濾器) 45
3-3 CTRY@HZIF-90@ZnTA 之中空結構材料鑑定與活性實驗 46
3-3-1 CTRY@HZIF-90@ZnTA 之X射線粉末繞射儀圖譜分析 46
3-3-2 CTRY@HZIF-90@ZnTA 之穿透式電子顯微鏡影像分析 46
3-3-3 CTRY@HZIF-90@ZnTA 材料之活性比較 47
3-3-4 CTRY@HZIF-90@ZnTA 在尿素環境下之活性比較 47
3-3-5 HZIF-90@ZnTA & ZIF-90材料對於活性的影響 48
3-3-6 胰凝乳蛋白酶在酸性環境下之活性比較 48
第四章 結論與未來展望 49
參考文獻及資料 50
參考文獻 1. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
2. Wu, C.-D.; Zhang, L.; Lin, W., 1D and 2D Homochiral Metal-Organic Frameworks Built from a New Chiral Elongated Binaphthalene-Derived Bipyridine. Inorganic Chemistry 2006, 45 (18), 7278-7285.
3. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
4. Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C., Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials 2018, 30 (37), 1704303.
5. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 703-723.
6. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
7. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chemical Reviews 2012, 112 (2), 869-932.
8. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231.
9. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083.
10. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
11. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
12. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
13. Yoon, M.; Suh, K.; Natarajan, S.; Kim, K., Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. Angewandte Chemie International Edition 2013, 52 (10), 2688-2700.
14. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
15. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
16. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
17. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
18. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
19. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
20. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
21. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science (New York, N.Y.) 2008, 319 (5865), 939-943.
22. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58-67.
23. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O′Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103, 10186 - 10191.
24. Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications 2011, 47 (7), 2071-2073.
25. Qian, J.; Sun, F.; Qin, L., Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters 2012, 82, 220–223.
26. Tanaka, S.; Kida, K.; Okita, M.; Ito, Y.; Miyake, Y., Size-controlled Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Crystals in an Aqueous System at Room Temperature. Chemistry Letters 2012, 41 (10), 1337-1339.
27. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y., Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15 (9), 1794-1801.
28. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications 2015, 6 (1), 7240.
29. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.
30. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society 2012, 134 (35), 14345-14348.
31. Wee, L. H.; Lescouet, T.; Ethiraj, J.; Bonino, F.; Vidruk, R.; Garrier, E.; Packet, D.; Bordiga, S.; Farrusseng, D.; Herskowitz, M.; Martens, J. A., Hierarchical Zeolitic Imidazolate Framework-8 Catalyst for Monoglyceride Synthesis. ChemCatChem 2013, 5 (12), 3562-3566.
32. Chen, E.-X.; Yang, H.; Zhang, J., Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. Inorganic Chemistry 2014, 53 (11), 5411-5413.
33. Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8 (3), 2812-2819.
34. Vasconcelos, I. B.; Silva, T. G. d.; Militão, G. C. G.; Soares, T. A.; Rodrigues, N. M.; Rodrigues, M. O.; Costa, N. B. d.; Freire, R. O.; Junior, S. A., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances 2012, 2 (25), 9437-9442.
35. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45 (10), 1557-1559.
36. Chen, Y. M.; Yu, L.; Lou, X. W., Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. Angewandte Chemie International Edition 2016, 55 (20), 5990-5993.
37. Torad, N. L.; Salunkhe, R. R.; Li, Y.; Hamoudi, H.; Imura, M.; Sakka, Y.; Hu, C.-C.; Yamauchi, Y., Electric Double-Layer Capacitors Based on Highly Graphitized Nanoporous Carbons Derived from ZIF-67. Chemistry – A European Journal 2014, 20 (26), 7895-7900.
38. Rösler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R. A., Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk–Shell Metal@Zn/Co ZIF Nanostructures. Chemistry – A European Journal 2016, 22 (10), 3304-3311.
39. Chou, L.-Y.; Hu, P.; Zhuang, J.; Morabito, J. V.; Ng, K. C.; Kao, Y.-C.; Wang, S.-C.; Shieh, F.-K.; Kuo, C.-H.; Tsung, C.-K., Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal–organic frameworks via double-solvent mediated overgrowth. Nanoscale 2015, 7 (46), 19408-19412.
40. Yang, J.; Zhang, F.; Lu, H.; Hong, X.; Jiang, H.; Wu, Y.; Li, Y., Hollow Zn/Co ZIF Particles Derived from Core–Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. Angewandte Chemie International Edition 2015, 54 (37), 10889-10893.
41. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
42. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
43. Messing, R. A., Introduction and General History of Immobilized Enzymes. Academic Press: 1975.
44. Liu, D.-M.; Chen, J.; Shi, Y.-P., Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends in Analytical Chemistry 2018, 102, 332-342.
45. Bernfeld, P.; Wan, J., Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science 1963, 142 (3593), 678.
46. Wong, L. S.; Thirlway, J.; Micklefield, J., Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. Journal of the American Chemical Society 2008, 130 (37), 12456-12464.
47. Halliwell, B.; Gutteridge, J. M., The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 1995, 18 (1), 125-126.
48. https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/.
49. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.; Mazur, M.; Telser, J., Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser JFree radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. The international journal of biochemistry & cell biology 2007, 39, 44-84.
50. Deisseroth, A., & Dounce, A. L., Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiological reviews 1970, 50(3), 319–375. .
51. Blokhina, O., Virolainen, E., & Fagerstedt, K. V., Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of botany 2003, 91 Spec No(2), 179–194.
52. Fita, I.; Rossmann, M. G., The NADPH binding site on beef liver catalase. Proceedings of the National Academy of Sciences 1985, 82 (6), 1604.
53. B., C., Effect of pH upon the reaction kinetics of the enzyme-substrate compounds of catalase. The Journal of biological chemistry 1952, 194(2), 471–481.
54. https://en.wikipedia.org/wiki/Catalase.
55. https://en.wikipedia.org/wiki/Chymotrypsin.
56. Wilcox, P. E., [5] Chymotrypsinogens—chymotrypsins. In Methods in Enzymology, Academic Press: 1970; Vol. 19, pp 64-108.
57. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K., Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
58. Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J.; Caruso, F., Void Engineering in Metal–Organic Frameworks via Synergistic Etching and Surface Functionalization. Advanced Functional Materials 2016, 26 (32), 5827-5834.
59. Bragg William, H. B. W., L., Proc. Royal Soc. Lond 1913, 88, 428-438.
60. Billah, A. Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication. 2016.
61. Sing, K., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 1985, 57, 603.
62. Wu, C.-s.; Xiong, Z.-h.; Li, C.; Zhang, J.-m., Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Advances 2015, 5 (100), 82127-82137.
63. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1), 248-254.
64. de Moreno, M. R.; Smith, J. F.; Smith, R. V., Mechanism Studies of Coomassie Blue and Silver Staining of Proteins. Journal of Pharmaceutical Sciences 1986, 75 (9), 907-911.
65. Ou, P.; Wolff, S. P., A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. Journal of Biochemical and Biophysical Methods 1996, 31 (1), 59-67.
66. Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P., Hydrogen peroxide production during experimental protein glycation. FEBS Letters 1990, 268 (1), 69-71.
67. Anderson, J.; Byrne, T.; Woelfel, K. J.; Meany, J. E.; Spyridis, G. T.; Pocker, Y., The Hydrolysis of p-Nitrophenyl Acetate: A Versatile Reaction To Study Enzyme Kinetics. Journal of Chemical Education 1994, 71 (8), 715.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2020-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明