博碩士論文 107223044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.216.32.116
姓名 陳信樺(Xin-Hua Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用機械力化學法合成金屬有機骨架材料-74及酵素包覆應用之研究
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 金屬有機骨架材料 (Metal-organic frameworks, MOFs) 在近幾年來的研究相當的熱門,是由金屬離子或金屬氧化物與有機配體所組成,其具有內部的空腔結構、高比表面積、良好的吸附性質以及擁有特定的窗口大小,因而應用於諸多領域上,其中讓我們感興趣的則是酵素固定化之模板的應用。
  然而,多數合成金屬有機骨架材料的方法仍以傳統的加熱法 (Conventional heating) 為主,在合成過程中往往需要大量有機溶劑、費時、高溫的合成環境,對於包覆生物分子於其中的應用性有所限制。本實驗室於2015年利用原位創新合成 (de novo) 法,將ZIFs與酵素同時在水溶液中合成出CAT@ZIF-90,搭配孔洞的篩選性質,進行底物 (substrate) 的催化反應,並抵擋了蛋白質分解酶的作用,達到保護酵素的目的。另外,也在2017年發表以機械力化學法,添加微量的溶劑,在短時間以及室溫的條件下成功的合成出UiO-66-F4。
  因此,為了將酵素固定化之應用擴展到其他的MOFs,我們利用了機械球磨法之概念,將酵素一起加入以達包覆之目的。本研究以過氧化氫酶 (CAT) 與Zn-MOF-74的搭配為主體,有別於傳統酵素固定化之方法,機械力化學法以較為溫和的合成環境,成功將CAT包覆於Zn-MOF-74之中,並保有催化活性,為了進一步探討酵素的折疊效應與孔洞的篩選性質,我們分別以尿素 (Urea) 蛋白質展開的變性試劑 (Denature reagent) 與蛋白質分解酶做測試,確認CAT仍具有催化活性。此外,我們也成功將另一種酵素 (如Chymotrypsin) 包覆於Zn-MOF-74,藉由機械力化學法快速合成出來,並做後續的活性鑑定。期望未來能利用此一符合綠色化學的機械力球磨法,合成出更多種類的生物複合材料,以擴展酵素固定化之應用。
摘要(英) Metal-organic frameworks (MOFs) have been quite popular in the recent years. They are composed of metal ions or metal oxides with organic linkers. Because of their internal cavity structure, high surface area, extraordinary adsorption property and the specific aperture size, they have been used in many fields. Among these fields, we are interested in the application of enzyme immobilized platforms.
  However, most of the methods for synthesizing MOF materials are still based on conventional heating, which often requires a large amount of organic solvents, time-consuming, and high temperature synthetic environment. The harsh synthetic conditions place a limitation on applications of encapsulating enzymes into the MOF materials. In our previous report in 2015, we demonstrated a novel approach, so called de novo, for synthesizing the biocomposites of CAT@ZIF-90 by encapsulating enzymes inside MOFs, ZIF-90, under mild aqueous solution. The MOFs could endow enzymes with size selectivity to promote the catalytic reaction of the substrate, prohibiting protease larger than the designed aperture from reaching the catalyst to protect the catalase. In 2017, our group published a report that an eco-friendly and rapid chemical synthesis of UiO-66 analog, UiO-66-F4, was demonstrated at room temperature by the mechanochemistry. Thus, we use this concept of mechanochemical approach to immobilize enzymes inside of MOFs in order to expand the applications of enzyme immobilizations to other MOFs.
  Herein, we demonstrated the mechanochemical strategy for the synthesis of biocomposites by embedding catalase, enzymes for hydrogen peroxide hydrolysis, in Zn-MOF-74 via a ball milling process and maintained the enzymatic biological activity. In addition, this synthetic approach is different from the conventional method of enzyme immobilization in which it provides a milder synthetic environment and minimizes the use of organic solvents during synthesis. It is worth noting that the embedded CAT could not only be protected in proteinase K solution by the aperture size selectivity but also reduce unfolding in urea, a denature reagent by spatial confinement of the MOF structure. To demonstrate the generality of the method, chymotrypsin was encapsulating in Zn-MOF-74 via the mechanochemical approach as well as maintaining biological activity. We expect that the developed method can be generally applied to encapsulate enzymes of various sizes into MOFs with varied structures.
關鍵字(中) ★ 金屬有機骨架材料
★ 機械力化學法
★ 金屬有機骨架材料-74
★ 過氧化氫酶
★ 胰凝乳蛋白酶
關鍵字(英) ★ Metal-organic frameworks
★ Mechanochemistry
★ Zn-MOF-74
★ Catalase
★ Chymotrypsin
論文目次 中文摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 金屬有機骨架材料 (Metal-organic Frameworks, MOFs) 1
1.2 MOF-74之文獻回顧 3
1.3 機械力化學法 (Mechanochemistry) 5
1.4 酵素固定化 (Enzyme immobilization) 7
1.5 研究動機與目的 9
第二章 實驗部分 11
2.1 實驗藥品 11
2.2 實驗儀器 12
2.3 實驗儀器之原理 14
2.3.1 中量快速球磨機 (Ball Mill Instrument) 14
2.3.2 X射線粉末繞射儀 (Powder X-ray Diffraction;PXRD) 15
2.3.3 場發射掃描式電子顯微鏡 (Field-emission Scanning Electron Microscopy;FE-SEM) 16
2.3.4 穿透式電子顯微鏡 (Transmission Electron Microscopy;TEM) 17
2.3.5 等溫氮氣吸/脫附測量儀 (Nitrogen ad/desorption isothermal measurement) 18
2.3.6 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) 20
2.3.7 紫外可見光光譜儀 (Ultraviolet/Visible Spectrophotometer;UV/Vis) 22
2.4 酵素介紹 23
2.4.1 過氧化氫酶 (Catalase) 23
2.4.2 胰凝乳蛋白酶 (Chymotrypsin) 25
2.4.3 蛋白酶K (Proteinase K) 25
2.5 實驗步驟 26
2.5.1 機械力化學法 – Zn-MOF-74之合成 26
2.5.2 機械力化學法 – CAT@Zn-MOF-74之合成 26
2.5.3 機械力化學法 – CTRY@Zn-MOF-74之合成 27
2.5.4 檢測球磨CAT@Zn-MOF-74與CTRY@Zn-MOF-74的酵素含量 (Bradford assay) 27
2.5.5 檢測過氧化氫水溶液之濃度 (Fox assay) 29
2.5.6 檢測α-胰凝乳蛋白酶之活性 30
2.5.7 蛋白酶 (Proteinase K) 下之活性測試 32
2.5.8 CAT@Zn-MOF-74蛋白質結構之摺疊效應 33
2.5.9 CAT@Zn-MOF-74之蛋白質凝膠電泳分析 (SDS-PAGE) 34
第三章 結果與討論 36
3.1 球磨Zn-MOF-74與CAT@Zn-MOF-74複合材料之鑑定 36
3.1.1 球磨法合成Zn-MOF-74與其晶形鑑定 36
3.1.2 不同輔助溶劑對CAT@Zn-MOF-74之合成晶形鑑定 37
3.1.3 不同球磨時間與頻率對CAT@Zn-MOF-74之合成晶形鑑定 38
3.1.4 不同冰浴攪拌時間對CAT@Zn-MOF-74之合成晶形鑑定 40
3.1.5 等溫氮氣吸/脫附儀鑑定結果 42
3.1.6 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 43
3.1.7 CAT@Zn-MOF-74於蛋白酶K環境下之催化活性探討 44
3.1.8 CAT@Zn-MOF-74於尿素環境下之催化活性探討 45
3.2 球磨CTRY@Zn-MOF-74複合材料之鑑定 47
3.2.1 球磨法合成CTRY@Zn-MOF-74與其晶形鑑定 47
3.2.2 CTRY@Zn-MOF-74於蛋白酶K環境下之催化活性探討 48
第四章 結論與未來展望 50
第五章 參考文獻 52
參考文獻 1. Tomic, E. A. Thermal stability of coordination polymers. Journal of Applied Polymer Science, 1965, 9 (11), 3745-3752.
2. Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal–Organic Frameworks. Chemical Reviews, 2012, 112 (2), 673-674.
3. Gliemann, H.; Wöll, C. Epitaxially grown metal-organic frameworks. Materials Today, 2012, 15 (3), 110-116.
4. Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature, 1995, 378 (6558), 703-706.
5. Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials, 2017, 29 (7), 2618-2625.
6. Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature, 2005, 436 (7048), 238-241.
7. Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–Organic Frameworks for Separations. Chemical Reviews, 2012, 112 (2), 869-932.
8. Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 2015, 44 (19), 6804-6849.
9. Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 2012, 112 (2), 1196-1231.
10. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 2012, 112 (2), 1232-1268.
11. Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137 (43), 13780-13783.
12. Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K. Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano, 2014, 8 (3), 2812-2819.
13. Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Proton Conduction with Metal-Organic Frameworks. Science, 2013, 341 (6144), 354.
14. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 2017, 16 (2), 220-224.
15. Everett, D. H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry, 1972, 31 (4), 577-638.
16. Falcaro, P.; Ricco, R.; Doherty, C. M.; Liang, K.; Hill, A. J.; Styles, M. J. MOF positioning technology and device fabrication. Chemical Society Reviews, 2014, 43 (16), 5513-5560.
17. Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 2012, 112 (2), 933-969.
18. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 64 (36), 8553-8557.
19. Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English, 1985, 24 (12), 1026-1040.
20. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions, 2011, 40 (2), 321-330.
21. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials, 2009, 21 (13), 2580-2582.
22. Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 2006, 8 (3), 211-214.
23. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications, 2008, (31), 3642-3644.
24. Gygi, D.; Bloch, E. D.; Mason, J. A.; Hudson, M. R.; Gonzalez, M. I.; Siegelman, R. L.; Darwish, T. A.; Queen, W. L.; Brown, C. M.; Long, J. R. Hydrogen Storage in the Expanded Pore Metal–Organic Frameworks M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chemistry of Materials, 2016, 28 (4), 1128-1138.
25. Abu Tarboush, B. J.; Chouman, A.; Jonderian, A.; Ahmad, M.; Hmadeh, M.; Al-Ghoul, M. Metal–Organic Framework-74 for Ultratrace Arsenic Removal from Water: Experimental and Density Functional Theory Studies. ACS Applied Nano Materials, 2018, 1 (7), 3283-3292.
26. Wu, C.; Chou, L.-Y.; Long, L.; Si, X.; Lo, W.-S.; Tsung, C.-K.; Li, T. Structural Control of Uniform MOF-74 Microcrystals for the Study of Adsorption Kinetics. ACS Applied Materials & Interfaces, 2019, 11 (39), 35820-35826.
27. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science, 2012, 336 (6084), 1018.
28. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O′Keeffe, M.; Yaghi, O. M. Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society, 2005, 127 (5), 1504-1518.
29. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. L.; Halasz, I.; Friščić, T. In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society, 2016, 138 (9), 2929-2932.
30. Zheng, J.; Barpaga, D.; Trump, B. A.; Shetty, M.; Fan, Y.; Bhattacharya, P.; Jenks, J. J.; Su, C.-Y.; Brown, C. M.; Maurin, G.; McGrail, B. P.; Motkuri, R. K. Molecular Insight into Fluorocarbon Adsorption in Pore Expanded Metal–Organic Framework Analogs. Journal of the American Chemical Society, 2020, 142 (6), 3002-3012.
31. Liu, Y.; Kabbour, H.; Brown, C. M.; Neumann, D. A.; Ahn, C. C. Increasing the Density of Adsorbed Hydrogen with Coordinatively Unsaturated Metal Centers in Metal−Organic Frameworks. Langmuir, 2008, 24 (9), 4772-4777.
32. Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proceedings of the National Academy of Sciences, 2008, 105 (33), 11623.
33. Grant Glover, T.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chemical Engineering Science, 2011, 66 (2), 163-170.
34. Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society, 2008, 130 (33), 10870-10871.
35. del Rio, M.; Turnes Palomino, G.; Palomino Cabello, C. Metal–Organic Framework@Carbon Hybrid Magnetic Material as an Efficient Adsorbent for Pollutant Extraction. ACS Applied Materials & Interfaces, 2020, 12 (5), 6419-6425.
36. Wang, J.; Fan, Y.; Lee, H.-w.; Yi, C.; Cheng, C.; Zhao, X.; Yang, M. Ultrasmall Metal–Organic Framework Zn-MOF-74 Nanodots: Size-Controlled Synthesis and Application for Highly Selective Colorimetric Sensing of Iron(III) in Aqueous Solution. ACS Applied Nano Materials, 2018, 1 (7), 3747-3753.
37. Yue, Y.; Qiao, Z.-A.; Fulvio, P. F.; Binder, A. J.; Tian, C.; Chen, J.; Nelson, K. M.; Zhu, X.; Dai, S. Template-Free Synthesis of Hierarchical Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135 (26), 9572-9575.
38. Huang, Y.-H.; Lo, W.-S.; Kuo, Y.-W.; Chen, W.-J.; Lin, C.-H.; Shieh, F.-K. Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications, 2017, 53 (43), 5818-5821.
39. Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Toward Greener Nanosynthesis. Chemical Reviews, 2007, 107 (6), 2228-2269.
40. Garay, A. L.; Pichon, A.; James, S. L. Solvent-free synthesis of metal complexes. Chemical Society Reviews, 2007, 36 (6), 846-855.
41. Friščić, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm, 2009, 11 (3), 418-426.
42. Strobridge, F. C.; Judaš, N.; Friščić, T. A stepwise mechanism and the role of water in the liquid-assisted grinding synthesis of metal–organic materials. CrystEngComm, 2010, 12 (8), 2409-2418.
43. Hasa, D.; Miniussi, E.; Jones, W. Mechanochemical Synthesis of Multicomponent Crystals: One Liquid for One Polymorph? A Myth to Dispel. Crystal Growth & Design, 2016, 16 (8), 4582-4588.
44. Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Central Science, 2017, 3 (1), 13-19.
45. Mottillo, C.; Friščić, T. Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules, 2017, 22 (1).
46. Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S. L. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chemical Science, 2015, 6 (3), 1645-1649.
47. Friščić, T.; Halasz, I.; Beldon, P. J.; Belenguer, A. M.; Adams, F.; Kimber, S. A. J.; Honkimäki, V.; Dinnebier, R. E. Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chemistry, 2013, 5 (1), 66-73.
48. Gomes-Ruffi, C. R.; Cunha, R. H. d.; Almeida, E. L.; Chang, Y. K.; Steel, C. J. Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage. LWT, 2012, 49 (1), 96-101.
49. Chapman, R.; Stenzel, M. H. All Wrapped up: Stabilization of Enzymes within Single Enzyme Nanoparticles. Journal of the American Chemical Society, 2019, 141 (7), 2754-2769.
50. Hakala, T. K.; Liitiä, T.; Suurnäkki, A. Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp. Carbohydrate Polymers, 2013, 93 (1), 102-108.
51. Subba Rao, C.; Sathish, T.; Ravichandra, P.; Prakasham, R. S. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochemistry, 2009, 44 (3), 262-268.
52. Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 2012, 30 (3), 489-511.
53. Datta, S.; Christena, L. R.; Rajaram, Y. R. S. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 2013, 3 (1), 1-9.
54. Nguyen, H. H.; Kim, M. J. A. S.; Technology, C. An Overview of Techniques in Enzyme Immobilization. 2017, 26, 157-163.
55. Zhou, F.; Luo, J.; Song, S.; Wan, Y. Nanostructured Polyphenol-Mediated Coating: a Versatile Platform for Enzyme Immobilization and Micropollutant Removal. Industrial & Engineering Chemistry Research, 2020, 59 (7), 2708-2717.
56. Majewski, M. B.; Howarth, A. J.; Li, P.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K. Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 2017, 19 (29), 4082-4091.
57. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K. Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2015, 137 (13), 4276-4279.
58. de Carvalho, J. F.; de Medeiros, S. N.; Morales, M. A.; Dantas, A. L.; Carriço, A. S. Synthesis of magnetite nanoparticles by high energy ball milling. Applied Surface Science, 2013, 275, 84-87.
59. Howard, J. L.; Cao, Q.; Browne, D. L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer. Chemical Science, 2018, 9 (12), 3080-3094.
60. Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science, 2019, 366 (6472), 1500.
61. X-ray mechanism.
http://www.rightek.com.tw/product_detail.php?id=183.
62. Braggs law.
https://www.itsfun.com.tw/%E5%B8%83%E6%8B%89%E6%A0%BC%E5%AE%9A%E5%BE%8B/wiki-978798-761948.
63. Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57 (4), 603-619.
64. SDS-PAGE.
https://microbenotes.com/polyacrylamide-gel-electrophoresis-page/.
65. Halliwell, B.; Gutteridge, J. M. C. The definition and measurement of antioxidants in biological systems. Free Radical Biology and Medicine, 1995, 18 (1), 125-126.
66. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 2007, 39 (1), 44-84.
67. Deisseroth, A.; Dounce, A. L. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiological Reviews, 1970, 50 (3), 319-375.
68. Fita, I.; Rossmann, M. G. The NADPH binding site on beef liver catalase. Proc Natl Acad Sci U S A, 1985, 82 (6), 1604-1608.
69. Chymotrypsin.
https://en.wikipedia.org/wiki/Chymotrypsin.
70. Proteinase K.
https://en.wikipedia.org/wiki/Proteinase_K.
71. de Moreno, M. R.; Smith, J. F.; Smith, R. V. Mechanism Studies of Coomassie Blue and Silver Staining of Proteins. Journal of Pharmaceutical Sciences, 1986, 75 (9), 907-911.
72. Bradford assay.
https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-assays-analysis/protein-assays/bradford-assays.html.
73. Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H.; Kuo, P.-E.; Chou, L.-Y.; Tsung, C.-K.; Shieh, F.-K. Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications, 2019, 10 (1), 5002.
74. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K. Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society, 2017, 139 (19), 6530-6533.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2020-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明