博碩士論文 107223052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.223.32.230
姓名 甘峻維(Chun-Wei Kan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 高效能鈣鈦礦太陽能電池之低溫製備雙層電子傳遞層研究
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦太陽能電池(Perovskite solar cells,簡稱PSC)由於組裝過程簡易且使用的原料少,因此製作成本低而快速發展。至2020年PSC元件已驗證的光電轉換效率已達25.2%。PSC元件中所使用的電子傳遞層(electron transporting layer, ETL)材料須具備高電子萃取效率、快速電子傳遞及和鈣鈦礦層的valence band(VB)與conduction band(CB)能階匹配等特性。以低溫方式製備的TiO2膜雖然有利於低成本製造,但低溫製備的TiO2膜有低電子萃取能力及低導電度之缺點,導致所組裝的一般式PSC元件有嚴重的遲滯現象。本研究透過在TiO2奈米粒子懸浮液中添加高導電度SnO2奈米粒子在低溫下製備SnO2:TiO2膜(SnO2與TiO2奈米粒子混合所製備的膜),並且在SnO2:TiO2膜上再沉積一層SnO2膜形成雙層膜(SnO2:TiO2/SnO2),以此雙層膜作為電子傳遞層所組裝的鈣鈦礦太陽能電池比以TiO2/SnO2雙層膜及SnO2 or SnO2:TiO2 or TiO2單層膜為ETL的元件有較高的光電轉換效率。SnO2的添加能增加低溫製備之TiO2膜的導電度,SnO2:TiO2/SnO2膜的導電度(1.48×10-3 mS/cm)比TiO2膜(1.03×10-3 mS/cm)高,TiO2膜的CB能階為-4.40 eV,而雙層ETL中的SnO2:TiO2與SnO2的CB能階分別為-4.29 eV及-4.07 eV與鈣鈦礦膜的CB能階-4.02 eV匹配性比TiO2 ETL更好,因此有更好的電子萃取/導通能力,雙層ETL可以快速地將鈣鈦礦膜VB上受光激發至CB的電子萃取出來並傳遞至FTO導電玻璃上。而SnO2與FTO相容性不夠好,因此沉積在FTO上的SnO2膜不是很均勻連續,但在含有SnO2:TiO2膜上所再沉積一層SnO2膜的表面形貌連續平整且有高親水性,使得鈣鈦礦膜沉積在雙層膜上有較大的顆粒以SnO2:TiO2/SnO2為ETL所組裝之元件的光電轉換效率可達22.16%且元件的遲滯因子僅1%比用單層TiO2作為ETL之元件的光電轉換效率(18.48%)高、遲滯因子(52%)小。以SnO2:TiO2/SnO2及TiO2/SnO2雙層ETL所組裝之元件放置在手套箱1512小時的光電轉換效率為原效率的94%及93%,以SnO2、SnO2:TiO2及TiO2單層為ETL之元件的光電轉換效分別為原效率的94%、84%及85%。若元件未封裝放置在大氣下(25~30°C,相對溼度40-50%)48小時後,以SnO2:TiO2/SnO2及TiO2/SnO2雙層ETL所組裝之元件的光電轉換效率為原效率的33%及31%;以SnO2為ETL的元件效率只剩18%、而以SnO2:TiO2及TiO2為ETL之元件已量不到光電轉換效率。
摘要(英) The rapid progree of perovskite solar cell (PSC) is due to it has a simple assembly process, high efficiency and uses few materials, therefore the manufacturing cost is low. The certified power conversion efficiency (PCE) of PSC device has reached 25.2% in 2020. Electron transporting layer (ETL) used in PSC devices must have high electron extraction efficiency, fast electron transfer and the energy band matching those (valence band (VB) and conduction band (CB)) of the perovskite absorber. TiO2 ETL prepared at low temperature is beneficial to cost of manufacture, nevertheless, TiO2 film prepared at low temperature has the shortcomings of low electron extraction ability and low conductivity, which result in serious hysteresis and poor long-term stability when used in the regular typed PSC. In this study, high conducting SnO2 nanoparticles was added into TiO2/EtOH suspension to prepare SnO2:TiO2 nanocomposite film at low temperature by spin-coating. Furthermore a layer of SnO2 film was deposited on top of SnO2:TiO2 nanocomposite film to form a double-layer (SnO2:TiO2/SnO2) ETL, perovskite solar cell based on the double-layer ETL has higher PCE than those used SnO2 or SnO2:TiO2 or TiO2 single-layer film as an ETL. The addition of SnO2 can increase the electrical conductivity of the TiO2 film prepared at low temperature. The CB energy level of the TiO2 film is -4.40 eV, while the CB energy levels of SnO2:TiO2 and SnO2 in the double-layer ETL are -4.29 eV and -4.07 eV, respectively. The CB energy level of the perovskite film (-4.02 eV) has a better match to SnO2:TiO2/SnO2 than to TiO2 film. Therefore double-layer SnO2:TiO2/SnO2 ETL has better electron extraction ability compared to single-layer ETL. Furthermore, the surface morphology of the SnO2 filmdeposited on the SnO2:TiO2 is dense and flat.The high hydrophilicity surface of double-layer SnO2:TiO2/SnO2 ETL makes the desposited perovskite film has large particles. The PCE of the devicebased on SnO2:TiO2/SnO2 ETL reaches 22.16%, with very low hysteresis index of only 1%. On the other hand, PSC used TiO2 film as an ETL has a low PCE (18.48%) and high hysteresis index (52%). PSC based on SnO2:TiO2/SnO2 and TiO2/SnO2 ETL maintain 94% and 93% of the original PCE when places in the glove box for 1512 hours. While the devices used SnO2, SnO2:TiO2, and TiO2 as ETLs retain the PCE of 94%, 84%,and 85%, respectively. When the devices were placed in air without encapsulation for 48 hours, cells based on double-layer SnO2:TiO2/SnO2 and TiO2/SnO2 ETLs still have 34% and 33% of their original efficiency. Nevertheless, the PCE of the devices used single layer SnO2, SnO2:TiO2, and TiO2 ETL is close to zero.
關鍵字(中) ★ 鈣鈦礦
★ 電子傳遞層
★ 二氧化鈦
★ 二氧化錫
關鍵字(英) ★ Perovskite
★ Electron transporting layer
★ TiO2
★ SnO2
論文目次 摘要 i
Abstract vii
Graphical Abstract ix
謝誌 x
目錄 xi
圖目錄 xviii
表目錄 xxiv
附錄 xxvii
第一章、緒論 1
1-1、 前言 1
1-2、 鈣鈦礦太陽能電池(Perovskite solar cell, PSC) 4
1-2-1. 鈣鈦礦太陽能電池的架構 4
1-2-2. 一般式鈣鈦礦太陽能電池的工作原理 6
1-2-3. 鈣鈦礦太陽能電池的光電轉換效率 7
1-3、 鈣鈦礦太陽能電池之研究歷程 9
1-3-1. 第一個將鈣鈦礦材料應用於太陽能電池的研究 9
1-3-2. 固態電解質應用於鈣鈦礦太陽能電池 12
1-4、 鈣鈦礦活性層的製備方法 14
1-4-1. 一步驟合成法製備鈣鈦礦膜 15
1-4-2. 兩步驟合成法製備鈣鈦礦膜 16
1-4-3. 一步驟反溶劑法製備鈣鈦礦膜 18
1-5、 TiO2作為鈣鈦礦太陽能電池元件中電子傳遞材料的發展 20
1-5-1. 高溫鍛燒製備的TiO2膜 20
1-5-2. 低溫製備的TiO2膜 20
1-6、 SnO2作為鈣鈦礦太陽能電池元件中電子傳遞材料 22
1-6-1. 高溫鍛燒製備的SnO2膜 22
1-6-2. 低溫製備的SnO2膜 23
1-7、 SnO2修飾TiO2之電子傳遞層的製備 26
1-7-1. 透明導電玻璃和TiO2膜之間沉積一層SnO2膜 26
1-7-2. 將SnO2摻雜到TiO2中 27
1-7-3. TiO2膜與鈣鈦礦膜之間沉積一層SnO2膜 35
1-8、 研究動機 44
第二章、實驗部分 46
2-1、 實驗藥品及儀器設備 46
2-1-1. 藥品 46
2-1-2. 儀器設備 47
2-2、 一般式鈣鈦礦太陽能電池組裝步驟 48
2-2-1. 藥品配製 48
2-2-2. 元件組裝步驟 51
2-3、 儀器原理、樣品製備及量測 55
2-3-1. 熱蒸鍍系統(Thermal evaporation system) 55
2-3-2. 太陽光模擬器及光電轉換效率量測(Solar Simulator, DENSO KXL-500F及Keithley 2400 ) 56
2-3-3. 太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficiency (IPCE), Enlitech PVCS-I) 57
2-3-4. 掃描式電子顯微鏡 (Scanning Electron Microscope, Hitachi S-800) 58
2-3-5. X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover) 59
2-3-6. 光激發螢光光譜儀(Photoluminescence Spectrometer, Uni think Uni-RAM) 60
2-3-7. 紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy, Thermo VG-Scientific Sigma Probe) 61
2-3-8. 紫外光/可見光/近紅外光吸收(穿透)光譜儀(Ultraviolet-visible-NIR spectroscopy, HITACHI U-4100) 63
2-3-9. 動態光散射儀(Dynamic light scattering, Microtrac nanotrac wave) 63
2-3-10. 接觸角量測儀(Contact angle, Grandhand Ctag01) 64
2-3-11. 恆電位儀(Potentiostat, Metrohm Autolab PGSTAT30 ) 65
第三章、結果與討論 66
3-1、 不同濃度G-TiO2奈米粒子乙醇懸浮液、不同比例G-SnO2:TiO2奈米粒子乙醇懸浮液及1wt% G-SnO2奈米粒子乙醇懸浮液的平均粒徑 66
3-2、 G-TiO2奈米粒子乙醇懸浮液、G-SnO2:TiO2(2:8)奈米粒子乙醇懸浮液及SnO2奈米粒子水懸浮液經長時間的平均粒徑變化及製備成膜作為ETL所組裝之元件的PCE(%)變化 70
3-2-1. G-TiO2奈米粒子乙醇懸浮液的穩定性與最佳濃度G-TiO2奈米粒子乙醇懸浮液的篩選 70
3-2-2. 最佳比例G-SnO2:TiO2奈米粒子乙醇懸浮液的篩選與G-SnO2:TiO2 (2:8)奈米粒子乙醇懸浮液的穩定性 72
3-2-3. SnO2奈米粒子水懸浮液的穩定性與最佳濃度SnO2奈米粒子水懸浮液的篩選 75
3-2-4. G-TiO2奈米粒子乙醇懸浮液及SnO2奈米粒子水懸浮液的穩定性與最佳濃度SnO2奈米粒子水懸浮液的篩選 78
3-2-5. 1 wt% G-SnO2:TiO2(2:8)奈米粒子乙醇懸浮液及SnO2奈米粒子水懸浮液與最佳濃度SnO2奈米粒子水懸浮液的篩選 80
3-3、 不同ETL上沉積鈣鈦礦90-FAI膜作為吸光層所組裝之元件的光伏表現 83
3-4、 SnO2:TiO2/SnO2、TiO2/SnO2、SnO2、SnO2:TiO2及TiO2膜作為ETL所組裝之元件的IPCE 84
3-5、 分別以SnO2:TiO2/SnO2、TiO2/SnO2、SnO2、SnO2:TiO2及TiO2膜為電子傳遞層之最高效率元件的遲滯現象 86
3-6、 SnO2:TiO2/SnO2、TiO2/SnO2、SnO2:TiO2、SnO2及TiO2膜的UV-Vis穿透/吸收光譜圖及前置軌域能階 88
3-6-1. UV-Vis穿透光譜 88
3-6-2. SnO2:TiO2/SnO2、TiO2/SnO2、SnO2:TiO2、SnO2及TiO2膜的前置軌域能階 89
3-7、 SnO2的添加對TiO2膜導電度的影響 94
3-8、 SnO2的添加對TiO2膜表面親疏水性的影響 96
3-9、 5種ETLs的膜表面形貌 98
3-10、 沉積在SnO2:TiO2/SnO2、TiO2/SnO2、SnO2、SnO2:TiO2、及TiO2膜上的鈣鈦礦膜之表面形貌 100
3-11、 沉積在SnO2:TiO2/SnO2、TiO2/SnO2、SnO2、SnO2:TiO2、及TiO2膜上的鈣鈦礦膜之UV-Vis吸收光譜圖 103
3-12、 沉積在SnO2:TiO2/SnO2、TiO2/SnO2、SnO2、SnO2:TiO2、及TiO2膜上的鈣鈦礦膜之結晶度 104
3-13、 沉積在SnO2:TiO2/SnO2、TiO2/SnO2、SnO2、SnO2: TiO2、及TiO2膜上的鈣鈦礦膜之PL及TRPL圖 107
3-14、 SnO2:TiO2/SnO2、TiO2/SnO2、SnO2、SnO2:TiO2、及TiO2膜作為ETL所組裝之鈣鈦礦太陽能電池元件之長時間穩定性 109
3-15、SnO2:TiO2/SnO2、TiO2/SnO2、SnO2、SnO2:TiO2、及TiO2膜作ETL所組裝之元件的EIS圖 113
3-16、不同ETL之元件的玻璃面沉積NaF膜作為抗反射層的光伏表現 115
第四章、結論 117
參考文獻 119
附錄 130
附錄1.將五個不同電子傳遞層沉積在FTO上的SEM表面形貌圖 130
附錄2.以FTO為基板將90-FAI膜沉積在五個不同電子傳遞層上 132
附錄3. SnO2:TiO2/SnO2、TiO2/SnO2、SnO2、SnO2:TiO2及TiO2膜作為ETL之元件以不同delay time量測元件之光電轉換效率 133
附錄4. 不同ETL之元件的玻璃面沉積NaF作為抗反射層的IPCE圖 135
附錄5.以SnO2:TiO2/SnO2膜為ETL之元件的玻璃面上鍍一層NaF的元件穩態電流密度及光電轉換效率輸出 137
附錄6.將5個不同ETL之元件的玻璃面上鍍一層NaF的元件電流遲滯現象 138
附錄7.五個不同的ETLs沉積在FTO導電玻璃上並且玻璃面上鍍一層NaF的UV-Vis穿透光譜圖 139
參考文獻 [1] Nam Joong Jeon, Hyejin Na, Eui Hyuk Jung, Tae-Youl Yang, Yong Guk Lee, Geunjin Kim, Hee-Won Shin, Sang Il Seok , Jaemin Lee, and Jangwon Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells”, Nature Energy, 2018, 3, 682-689.
[2] https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&id=0000549462_HC15591658U13131URXX0
[3] http://en.wikipedia.org/wiki/Gustav_Rose, August, 2020.
[4] Minjin Kim, Gi-Hwan Kim, Tae Kyung Lee, In Woo Choi, Hye Won Choi, Yimhyun Jo, Yung Jin Yoon, Jae Won Kim, Jiyun Lee, Daihong Huh, Heon Lee, Sang Kyu Kwak, Jin Young Kim, and Dong Suk Kim1, “Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells“, Joule, 2019, 3, 2179-2192
[5] Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng, and Jinsong Huang, “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Sci. Adv., 2019, 5, 8925-8934.
[6] Da-Xing Yuan, Adam Gorka, Mei-Feng Xu, Zhao-Kui Wang and Liang-Sheng Liao, “Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing“, Phys. Chem. Chem. Phys., 2015, 17, 19745-19750.
[7] Chien-Hung Chiang, and Chun-Guey Wu, “A methodto prepare highly oriented MAPbI3 crystallites for high efficiency perovskite solar cell to achieve 86% fill factor”, ACS Nano, 2018, 12, 10355-10364.
[8] Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr, ” Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519-522.
[9] Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson, “Dye-Sensitized Solar Cells”, Chem. Rev., 2010, 110, 6595-6663.
[10] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc., 2009, 131, 6050-6051.
[11] Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel, and Nam-Gyu Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Sci. Rep., 2012, 2, 591-597.
[12] Jun‐Yuan Jeng, Yi‐Fang Chiang, Mu‐Huan Lee, Shin‐Rung Peng, Tzung‐Fang Guo, Peter Chen, and Ten‐Chin Wen, “CH3NH3PbI3 perovskite/fullerene planar- hetero-junction hybrid solar cell”, Adv. Mater., 2013, 25, 3727-3732.
[13] Chien-Hung Chiang, Jun-Wei Lin, and Chun-Guey Wu, “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
[14] Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-Baker, Peng Gao, Mohammad K. Nazeeruddin, and Michael Grätzel, “Sequential deposition as a route to high performance perovskite sensitized solar cell”, Nature, 2013, 499, 316-319.
[15] Chien-Hung Chiang, Zong-Liang Tseng, and Chun-Guey Wu, “Planar hetero-junction perovskite/PC71BM solar cells with efficiency over 16% via (2/1)-step spin-coating process”, J. Mater. Chem. A, 2014, 2, 15897-15903.
[16] Chien-Hung Chiang, Mohammad Khaja Nazeeruddin, Michael Grätzelc, and Chun-Guey Wu, “The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells”, Energy Environ. Sci., 2017, 10, 808-817.
[17] Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang, Seungchan Ryu, and Sang Il Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nature Materials, 2014, 13, 897-903.
[18] Mriganka Singh, Chien-Hung Chiang, Karunakara Moorthy Boopathi, Chintam Hanmandlu, Gang Li, Chun-Guey Wu, Hong-Cheu Lin, and Chih-Wei Chu, “A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules”, J. Mater. Chem. A, 2018, 6, 7114-7122.
[19] Ihteaz Muhaimeen Hossain, Damien Hudry, Florian Mathies, Tobias Abzieher, Somayeh Moghadamzadeh, Diana Rueda-Delgado, Fabian Schackmar, Michael Bruns, Ronn Andriessen, Tom Aernouts, Francesco Di Giacomo, Uli Lemmer, Bryce Sydney Richards, Ulrich Wilhelm Paetzold, and Afshin Hadipour, “Scalable Processing of Low Temperature TiO2 Nanoparticles for High Efficiency Perovskite Solar Cells”, ACS Appl. Energy Mater., 2019, 2, 47-58.
[20] Myung Sang You, Jin Hyuck Heo, Jin Kyoung Park, Sang Hwa Moon, Bum Jun Park, Sang Hyuk Im, “Low temperature solution processable TiO2 nano-sol for electron transporting layer of flexible perovskite solar cells”, Solar Energy Materials and Solar Cells, 2019, 194, 1-6.
[21] Qingshun Dong, Yantao Shi, Chunyang Zhang, Yukun Wu, Liduo Wang, “Energetically Favored Formation of SnO2 Nanocrystals as Electron Transfer Layer in Perovskite Solar Cells with High Efficiency Exceeding 19%”, Nano Energy, 2017, 40, 336-344.
[22] Qingshun Dong, Yantao Shi, Kai Wang, Yu Li, Shufeng Wang, Hong Zhang, Yujin Xing, Yi Du, Xiaogong Bai, and Tingli Ma, “Insight into Perovskite Solar Cells Based on SnO2 Compact Electron-Selective Layer”, J. Phys. Chem. C., 2015, 119, 10212-10217.
[23] Dong Yang, Ruixia Yang, Jing Zhang, Zhou Yang, Shengzhong (Frank) Liu, and Can Li, “High Efficiency Flexible Perovskite Solar Cells using Superior Low Temperature TiO2”, Energy Environ. Sci., 2015, 8, 3208-3214.
[24] Qi Jiang, Xingwang Zhang, Jingbi You, “SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells”, Small, 2018, 1801154.
[25] Yi Li, Jun Zhu, Yang Huang, Feng Liu, Mei Lv, Shuanghong Chen, Linhua Hu, Junwang Tang, Jianxi Yaod, Songyuan Dai, “Mesoporous SnO2 nanoparticle films as electrontransporting material in perovskite solar cells”, RSC Adv., 2015, 5, 28424-28429.
[26] Weijun Ke, Dewei Zhao, Alexander J. Cimaroli, Corey R. Grice, Pingli Qin, Qin Liu, Liangbin Xiong, Yanfa Yan, and Guojia Fang, “Effects of Annealing Temperature of Tin Oxide Electron Selective Layers on the Performance of Perovskite Solar Cells”, J. Mater. Chem. A, 2015, 3, 24163-24168.
[27] Mriganka Singh, Annie Ng, Zhiwei Ren, Hanlin Hu, Hong-Cheu Lin, Chih-Wei Chu, and Gang Li, “Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells”, Nano Energy, 2019, 60, 275-284.
[28] Guillermo Martínez-Denegri, Silvia Colodrero, Mariia Kramarenko, and Jordi Martorell, “All-Nanoparticle SnO2/TiO2 Electron-Transporting Layers Processed at Low Temperature for Efficient Thin-Film Perovskite Solar Cells”, ACS Appl. Energy Mater., 2018, 1, 5548-5556.
[29] Yu Hou, Xiao Chen, Shuang Yang, Chunzhong Li, Huijun Zhao, and Hua Gui Yang, “A Band-Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High-Performance Perovskite Solar Cells”, Adv. Funct. Mater., 2017, 1700878.
[30] Heng Guo, Haiyan Zhang, Jian Yang, Haiyuan Chen, Yulan Li, Liping Wang, and Xiaobin Niu, “TiO2/SnO2 Nanocomposites as Electron Transporting Layer for Efficiency Enhancement in Planar CH3NH3PbI3‑Based Perovskite Solar Cells”, ACS Appl. Energy Mater., 2018, 1, 6936-6944.
[31] Seulki Song, Gyeongho Kang, Limok Pyeon, Chaesung Lim, Gang-Young Lee, Taiho Park, and Jongmin Choi, “Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%)”, ACS Energy Lett., 2017, 2, 2667-2673.
[32] Konrad Wojciechowski, Michael Saliba, Tomas Leijtens, Antonio Abate, and Henry J. Snaith, “Sub-150℃ processed meso-superstructured perovskite solar cells with enhanced efficiency”, Energy Environ. Sci., 2014, 7, 1142-1147
[33] Weijun Ke, Dewei Zhao, Alexander J. Cimaroli, Corey R. Grice, Pingli Qin, Qin Liu, Liangbin Xiong, Yanfa Yan, and Guojia Fang, “Effects of Annealing Temperature of Tin Oxide Electron Selective Layers on the Performance of Perovskite Solar Cells”, J. Mater. Chem. A, 2015, 3, 24163-24168
[34] Inyoung Jeong, Heesuk Jung, Minwoo Park, Joon Suh Park, Hae Jung Son, Jin Joo, Jinwoo Lee, and Min Jae Ko, “A Tailored TiO2 Electron Selective Layer for High-Performance Flexible Perovskite Solar Cells via low temperature UV process”, Nano Energy, 2016, 68, 380-389
[35] Yoshitaka Sanehira, Naoyuki Shibayama, Youhei Numata, Masashi Ikegami, and Tsutomu Miyasaka, “Low-Temperature Synthesized Nb-Doped TiO2 Electron Transport Layer Enabling High-Efficiency Perovskite Solar Cells by Band Alignment Tuning”, ACS Appl. Mater. Interfaces, 2020, 12, 15175-15182
[36] Chun Huang, Peng Lin, Nianqing Fu, Kaiwen Sun, Mao Ye, Chang Liu, Xianyong Zhou, Longlong Shu, Xiaojing Hao, Baomin Xu, Xierong Zeng, Yu Wang, and Shanming Ke, “Ionic Liquid Modified SnO2 Nanocrystals as the Robust Electron Transporting Layer for Efficient Planar Perovskite Solar Cells”, J. Mater. Chem. A, 2018, 6, 22086-22095
[37] Xin Zhang, Zejiao Shi, Haizhou Lu, Xiaoguo Li, Haoliang Wang, Sijian Yuan, Fengcai Liu, Yiyi Pan, Zhenhua Weng, Haijuan Zhang, Xiaolei Cui, Qi Liu, Chongyuan Li, Akrajas Ali Umar, Jiao Wang, Xiao-Chun Hang, Zhengyi Sun, and Yiqiang Zhan, “Highly Efficient Planar Perovskite Solar Cells via Acid-assisted Surface Passivation”, J. Mater. Chem. A, 2019, 7, 22323-22331
[38] Guillermo Martínez-Denegri, Silvia Colodrero, Mariia Kramarenko, and Jordi Martorell, “All-Nanoparticle SnO2/TiO2 Electron-Transporting Layers Processed at Low Temperature for Efficient Thin-Film Perovskite Solar Cells”, ACS Appl. Energy Mater. 2018, 1, 5548-5556
[39] Zhiyong Liu, Bo Sun, Xingyue Liu, Jinghui Han, Haibo Ye, Yuxue Tu, Chen Chen, Tielin Shi, Zirong Tang, and Guanglan Liao, “15% efficient carbon based planar-heterojunction perovskite solar cells using TiO2/SnO2 bilayer as electron transport layer”, J. Mater. Chem. A, 2018, 6, 7409-7419
[40] Haixia Xie, Xingtian Yin, Jie Liu, Yuxiao Guo, Peng Chen, Wenxiu Que, Gangfeng Wang, and Bowen Gao, “Low temperature solution-derived TiO2-SnO2 bilayered electron transport layer for high performance perovskite solar cells”, Applied Surface Science, 2018, 15, 700-707.
[41] Duo Wang, Cuncun Wu, Wei Luo, Xuan Guo, Bo Qu, Lixin Xiao, and Zhijian Chen, “ZnO/SnO2 Double Electron Transport Layer Guides Improved Open Circuit Voltage for Highly Efficient CH3NH3PbI3-based Planar Perovskite Solar Cells”, ACS Appl. Energy Mater., 2018, 1, 2215-2221
[42] Nan Li, Jin Yan, Yuqian Ai, Ershuai Jiang, Liujin Lin, Chunhui Shou, Baojie Yan, Jiang Sheng, and Jichun Ye, “A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells”, Sci China Mater, 2020, 63, 207-215
[43] Bin Ding, Shi-Yu Huang, Qian-Qian Chu, Yan Li, Cheng-Xin Li, Chang-Jiu Li, and Guan-Jun Yang, “Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules”, J. Mater. Chem. A, 2018, 6, 10233-10242
[44] Qi Cao, Zhen Li, Jian Han, Shuangjie Wang, Jinmeng Zhu, Huijie Tang, Xiaoqiang Li, and Xuanhua Li, “Electron Transport Bilayer with Cascade Energy Alignment for Efficient Perovskite Solar Cells”, Sol. RRL, 2019, 1900333.
[45] Kuan Liu, Shuang Chen, Jionghua Wu, Huiyin Zhang, Minchao Qin, Xinhui Lu, Yingfeng Tu, Qingbo Meng, and Xiaowei Zhan, “Fullerene derivative anchored SnO2 for high-performance perovskite solar cells”, Energy Environ. Sci., 2018, 11, 3463-3471.
[46] Atsushi Kogo, Yoshitaka Sanehira, Youhei Numata, Masashi Ikegami, and Tsutomu Miyasaka, “Amorphous Metal Oxide Blocking Layers for Highly Efficient Low-Temperature Brookite TiO2‑Based Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2018, 10, 2224-2229.
[47] Meiyue Liu, Ziming Chen, Zhen Chen, Hin-lap Yip, and Yong Cao, “Cascade-Type Electron Extraction Design for Efficient Low-Bandgap Perovskite Solar Cells Based on Conventional Structure with Suppressed Open-Circuit Voltage Loss”, Mater. Chem. Front., 2019, 3, 496-504.
[48] Jia Xu, Mingde Fang, Jing Chen, Bing Zhang, Jianxi Yao, and Songyuan Dai, “ZnO-assisted Growth of CH3NH3PbI3-xClx film and Efficient Planar Perovskite Solar Cells with a TiO2/ZnO/C60 Electron Transport Trilayer”, ACS Appl. Mater. Interfaces, 2018, 10, 20578-20590
[49] Feilong Cai, Liyan Yang, Yu Yan, Jinghui Zhang, Fei Qin, Dan Liu, Yi-Bing Cheng, Yinhua Zhou, and Tao Wang. “Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer”, J. Mater. Chem. A, 2017, 5, 9402-9411.
[50] Yingchu Chen, Jie Shi, Xitao Li, Siqi Li, Xinding Lv, Xiangnan Sun, Yan-Zhen Zheng, and Xia Tao, “A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells”, J. Mater. Chem. A, 2020, 8, 6349-6359.
[51] Ziji Liu1, Hualin Zheng, Detao Liu, Zhiqing Liang, Wenyao Yang, Hao Chen, Long Ji, Shihao Yuan, Yiding Gu, and Shibin Li, “Controllable Two-dimensional Perovskite Crystallization via Water Additive for Highperformance Solar Cells”, Nanoscale Research Letters, 2020, 15, 1-8.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明