博碩士論文 107223021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.139.105.159
姓名 藍彥博(Yen-Po Lan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 有機染料與釕錯合物染料敏化太陽能電池元件優化與光伏特性探討
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 染料敏化太陽能電池(Dye-Sensitized Solar Cell, DSC)具有製作過程簡易、成本低、室內光源發電效率佳等優點,是非常有應用潛力的新世代光伏電池技術。本研究針對實驗室所開發的五種釕金屬錯合物染料HBC-23、DUY-28、DUY-29、HBC-30、及HBC-31和四種有機染料BTI-4、BTI-17、BTI-19、與BTI-21進行元件組裝條件的優化,探討其光電轉換效率及影響光伏行為的參數。在光電極的部分由調整TiO2膜的厚度及TiCl4後處理次數來提高染料吸附量與修補TiO2缺陷;染料溶液則利用添加Chenodeoxycholic acid (CDCA)與染料分子進行共吸附降低染料分子的聚集與填補裸露的TiO2表面;電解液是藉著改變組成(LiI、BMII、GuSCN 、tBP)與濃度,來調整TiO2導電帶能階與提高TiO2表面覆蓋度;對電極則貼上一層鋁箔紙做為光反射層。在HBC-31敏化的元件,其TiO2光電極由一次後處理增加為二次後處理,Jsc值由13.04 mA/cm2提高至14.57 mA/cm2,且在對電極貼上一層鋁箔紙做為光反射層,Jsc進一步提升至16.97 mA/cm2,元件效率達7.19%。HBC-23、DUY-28、DUY-29和HBC-30敏化之元件光電轉換效率分別為8.62%、7.89%、7.31和6.46%。BTI-4敏化之元件優化過後的短路電流密度(Jsc)達21.20 mA/cm2最高光電轉換效率為4.65%,BTI-17、BTI-19和BTI-21光電轉換效率分別為4.56%、0.65%和3.49%。
摘要(英) Dye-sensitized solar cells (DSCs) are the new-generation photovoltaic technologies, which have the advantages such as easy fabrication, low cost and high power conversion efficiency (PCE) under weak light or indoor lighting. In this study, we optimized the device fabrication conditions for five ruthenium complexes sensitizers (HBC-23, DUY-28, DUY-29, HBC-30 and HBC-31) and four organic dyes (BTI-4, BTI-17, BTI-19 and BTI-21) prepared in our Lab. The power conversion efficiency and the parameters affecting the photovoltaic performance of the DSCs ssenisitzed by metal complex and organic dyes were investigated. The dye loading increases and the defects of the photoelectrode reduced by adjusting the thickness and the number of TiCl4 post-treatments of the TiO2 films. Chenodeoxycholic acid (CDCA) was used as a co-adsorbent for decreasing the dye aggregation and mending the uncovered TiO2 surface. The components (LiI, BMII, GuSCN, tBP, I2) and concentration of the electrolyte were used to adjust the energy level of the TiO2 conduction band and protect the surface of TiO2 film. The back of the DSC cell is covered with an aluminum foil as the light reflection layer. The Jsc of thecell sensitized by HBC-31 increased from 13.04 mA/cm2 to 14.57 mA/cm2 by increasing the number of TiO2 post-treatment with TiCl4 form once to two times. When an aluminum foil was pasted to the counter electrode as the light reflection layer, the Jsc of the cell further increases to 16.97 mA/cm2 to reach the PCE of 7.19%. The PEC of HBC-23, DUY-28, DUY-29 and HBC-31 based devices are 8.62%, 7.89%, 7.31 and 6.46%, respectively. The Jsc of BTI-4 is 21.20 mA/cm2 and the highest PCE is 4.65%. The PCE of BTI-17, BTI-19, and BTI-21 sensitized cells are 4.56%, 0.65%, and 3.49%, respectively.
關鍵字(中) ★ 染料敏化太陽能電池 關鍵字(英) ★ dye-sensitized solar cell
論文目次 中文摘要 I
Abstract II
摘要圖 III
謝誌 IV
【目錄】 V
圖目錄 VII
表目錄 IX
附錄 XI
第一章、序論 1
1-1 前言 1
1-2 染料敏化太陽能電池工作原理 3
1-3 染料敏化太陽能電池構造 5
1-4 光電極(Photo electrode): 即有塗布TiO2薄膜的電極 6
1-4-1 導電玻璃 6
1-4-2 二氧化鈦(TiO2)薄膜 7
1-5 對電極 12
1-5-1在對電極背面貼上一層反射層對元件光伏參數的影響 13
1-6 電解質 14
1-6-1添加劑 16
1-7 研究動機 21
第二章、實驗方法 24
2-1 實驗藥品與儀器 24
2-2 染料敏化太陽能電池的組裝 26
2-2-1 光電極的製備 26
2-2-2 Pt對電極的製備 27
2-2-3 染料溶液的配製 27
2-2-4 電解液的配製 28
2-2-5 染料吸附、電解液添加及效率量測 28
2-3 儀器分析與樣品製備 31
2-3-1太陽光模擬器(Solar Simulator, YSS-50A)及光電轉換效率測量 31
2-3-2太陽能電池外部量子效率量測(Incident Photon to Current Conversion Efficieny, IPCE, ENLI Technology Co. Ltd., EQE-R-3011) 32
2-3-3交流阻抗分析(AC-Impedance analysis, Autolab PGSTAT30) 34
2-3-4紫外光/可見光/近紅外光吸收光譜(UV/VIS/NIR Spectrometer, Bio CARY300) 36
2-3-5光強度調制光電流/光電壓分析儀( Intensity modulated photocurrent spectroscopy , IMPS / Intensity modulated photovoltage spectroscopy , IMVS, ZAHNER XPOT 26341 & ZENNIUM 40295 ) 37
2-3-6瞬態吸收光譜(Transient Absorption Spectroscopy, Ultrafast Proteus) 39
2-3-7探針式輪廓測量(Surface Profiler, Veeco Dektak 150) 40
第三章、結果與討論 42
3-1 TiO2膜的厚度對HBC-31、BTI-4敏化電池光伏參數的影響 42
3-2染料溶液中共吸附劑CDCA濃度對元件光電轉換效率的影響 47
3-3 TiO2光電極使用先浸泡染料溶液再浸泡CDCA溶液對所組裝元件光伏參數的影響 52
3-4電解液中添加不同濃度LiI對元件光伏參數的影響 55
3-5電解液中添加不同濃度BMII對元件光伏參數的影響 59
3-6電解液中添加不同濃度tBP對元件光伏參數的影響 62
3-7電解液中添加不同濃度GuSCN對元件光伏參數的影響 65
3-8不同後處理次數的TiO2光電極對所相對元件光伏參數的影響 68
3-9 釕金屬錯合物染料HBC-31與有機染料BTI-4的元件優化條件比較 73
3-10 釕金屬錯合物染料所敏化之元件的光電表現 75
3-10-1 釕金屬錯合物染料所敏化之元件的IPCE探討 77
3-10-2釕金屬錯合物染料吸附於TiO2膜上的UV/Vis吸收光譜圖 79
3-10-3釕金屬錯合物染料所敏化元件的內部電阻探討 80
3-10-4電子在TiO2膜上的擴散係數 83
3-10-5電子在TiO2膜上的生命期 86
3-11在元件背面貼上PVC或鋁箔紙反射層後元件光伏參數的變化 87
第四章、結論 92
參考文獻 94
附錄 100
參考文獻 [1] 鍾健文, 王宗昶, “Manufacture Process and Future Technology Development of Various Solar Cells”, 遠東學報第三十卷第二期 (2020年08月16日)
[2] https://www.nrel.gov/pv/cell-efficiency.html (2020年08月16日)
[3] J. Moser; Monatsh. Chemie, 1887, 8, 373.
[4] H. Tsubomura; M. Matsumura; Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 1976, 261, 402-403.
[5] B. O′Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737-739.
[6] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 2005, 44, 6841-6851.
[7] M. S. Kim, B. G. Kim and J. Kim, "Effective variables to control the fill factor of organic photovoltaic cells" ACS Appl. Mater. Interfaces, 2009, 1, 1264-1269.
[8] V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Mater. Sci. Eng. R., 2009, 63, 81-99.
[9] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cells”, Nature, 2005, 4, 455-459.
[10] S. Ito, N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Films, 2008, 516, 4613-4619.
[11] Frédéric Sauvage, Dehong Chen, Pascal Comte, Fuzhi Huang, Leo-Philipp Heiniger, Yi-Bing Cheng, Rachel A. Caruso and Michael Graetzel “Dye-Sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10% ”,ACS Nano, 2010, 4, 4420-4425.
[12] Seulgi So, Imgon Hwanga and Patrik Schmuki “Hierarchical DSSC structures based on “single walled” TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%”, Energy Environ. Sci., 2015, 8, 849-854.
[13] A. Hauch, A. Georg, “Diffusion in the electrolyte and charge transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochim. Acta, 2001, 46, 3457-3466.
[14] 李佳. “具長碳鏈釕金屬錯合物染料搭配鈷錯合物[Co(bpy)3]2+/3+應用於染料敏化太陽能電池”, 國立中央大學 2014 年碩士論文.
[15] C. Hora, Fa. Santos, M. G. F. Sales, D. Ivanou, and A. Mendes “Dye-Sensitized Solar Cells for Efficient Solar and Artificial Light Conversion” ACS Sustainable Chem. Eng., 2019, 7, 13464-13470.
[16] L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, S. Chen, F. Kong, X. Pan, L. Liang and K. Wang, “Microstructure Design of Nanoporous TiO2 Photoelectrodes for Dye-Sensitized Solar Cell Modules”, J. Phys. Chem., 2007, 111, 358-362.
[17] H. Tian and L. Sun, “Iodine-free redox couples for dye-sensitized solar cells”, J. Mater. Chem., 2011, 21, 10592-10601.15.
[18] S. Yanagida, Y. Yu and K. Manseki, “Iodine/Iodide-Free Dye- Sensitized Solar Cells”, Acc. Chem. Res., 2009, 42, 1827-1838.
[19] J. Cong, X. Yang, L. Kloob and L. Sun, “Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized”, Energy Enviro. Sci., 2012, 5, 9180-9194.
[20] X. Wang, S. A. Kulkarni, B. I. Ito, S. K. Batabyal, K. Nonomura, C. C. Wong, M. Grätzel, S. G. Mhaisalkar and S. Uchida, "Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: An investigation of charge transport and shift in the TiO2 conduction band", ACS Appl. Mater. Interfaces, 2013, 5, 444-450.
[21] R. Stalder, D. Xie, A. Islam, L. Han, J. R. Reynolds, and K. S. Schanze, “ Panchromatic Donor–Acceptor–Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications”, Appl. Mater. Interfaces, 2014, 6, 8715-8722.
[22] G. Schlichthorl, S.-Y. Huang, J. Sprague and A.-J. Frank, “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy”, J. Phys. Chem. B, 1997,101, 8141-8155.
[23] Y. Shi, Y. Wang, M. Zhang and X. Dong, "Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium", Phys. Chem. Chem. Phys., 2011, 13, 14590-14597.
[24] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai,“Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability”, J. Phys. Chem. C, 2009, 113, 21779-21783.
[25] L. Yang, R. Lindblad, E. Gabrielsson, G. Boschloo, H. Rensmo, L. Sun, A. Hagfeldt, T. Edvinsson and E. M. J. Johansson, "Experimental and theoretical investigation of the function of 4-tert-butyl pyridine for interface energy level adjustment in efficient solid-state dye-sensitized solar cells", ACS Appl. Mater. Interfaces, 2018, 10, 11572-11579.
[26] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S.Yanagida, “Role of Electrolytes on Charge Recombination in Dye Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple”, J. Phys. Chem. B, 2005, 109, 3480-3487.
[27] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Da, “Photoelectrochemical effects of guanidinium thiocyanate on dye sensitized solar cell performance and stability”, J. Phys. Chem. C, 2009, 113, 21779-21783.
[28] Q. Wang, J. E. Moser and M. Grätzel, "Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells", J. Phys. Chem. B, 2005, 109, 14945-14953.
[29] C. Longo, A. F. Nogueira and M. A. De Paoli, "Solid-state and flexible dye-sensitized TiO2 solar cells: A study by electrochemical impedance spectroscopy", J. Phys. Chem. B, 2002, 106, 5925-5930.
[30] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, "Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays", Nano Lett., 2007, 7, 69-74.
[31] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, "Highly effcient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells", Solar. Energ. Mat. Solar. Cell, 2000, 64, 115-134.
[32] Xiao Jiang, Tannia Marinado, Erik Gabrielsson, Daniel P. Hagberg, Licheng Sun and Anders Hagfeldt. "Structural Modification of Organic Dyes for Efficient Coadsorbent-Free Dye-Sensitized Solar Cells",J. Phys. Chem. C, 2010, 114, 2799-2805.
[33] Y. Yang, J. Zhang, C. Zhou, S. Wu, S. Xu, W. Liu, H. Han, B. Chen and X. Zhao, "Effect of lithium iodide addition on Poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell", J. Phys. Chem. B, 2008, 112, 6594-6602.
[34] M. Pastore, E. Mosconi and F. D. Angelis, "Computational investigation of dye-iodine interactions in organic dye-sensitized solar cells", J. Phys. Chem. C, 2012, 116, 5965-5973.
[35] X. Ren, Q. Feng, G. Zhou, C. H. Huang and Z. S. Wang, "Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells", J. Phys. Chem. C, 2010, 114, 7190-7195.
[36] Z. Sun, R. K. Zhang, H. H. Xie, H. Wang, M. Liang and S. Xue, "Nonideal charge recombination and conduction band edge shifts in dye-sensitized solar cells based on adsorbent doped Poly(ethylene oxide) electrolytes", J. Phys. Chem. C, 2013, 117, 4364-4373.
[37] C. Renault, V. Balland, B. Limoges and C. Costentin, "Chronoabsorptometry to investigate conduction-band-mediated electron transfer in mesoporous TiO2 thin films", J. Phys. Chem. C, 2015, 119, 14929-14937.
[38] M. J. Katz, M. J. D. Vermeer, O. K. Farha, M. J. Pellin and J. T. Hupp, "Dynamics of back electron transfer in dye-sensitized solar cells featuring 4-tert-butyl-pyridine and atomic-layer-deposited alumina as surface modifiers", J. Phys. Chem. B, 2015, 119, 7162-7169.
[39] Z. Yu, M. Gorlov, J. Nissfolk, G. Boschloo and L. Kloo, "Synergistic effect of n-methylbenzimidazole and guanidiniumthiocyanate on the performance of dye-sensitized solar cells based on ionic liquid electrolytes", J. Phys. Chem. C, 2010, 114, 22330-22337.
[40] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, "Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy", J. Phys. Chem. B, 1997, 101, 10281-10289.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明