博碩士論文 106324017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.221.85.33
姓名 呂明威(Ming-Wei Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 含RGD序列之胜肽對人類多能幹細胞培養的比較研究
(Comparative Study on RGD-Containing Motifs of Synthetic Peptides for Human Pluripotent Stem Cells Cultivation)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-1以後開放)
摘要(中) 人類多能幹細胞,包括人類胚胎幹細胞和人類誘導多能幹細胞,在再生組織工程領域裡是相當有前景的來源。起初,人類多能幹細胞需要培養在動物飼養層細胞或動物源蛋白塗佈的培養皿上進行培養,例如小鼠胚胎成纖維細胞(MEF)或Matrigel,這些異種源細胞所分泌細胞外間質(ECM)有利於幹細胞進行附著進而增長,但因為這些異種源細胞與蛋白質含有未知的化學組成,對於外來的臨床試驗增添許多不確定性。因此,可靠的、無異源的生物材料──合成胜肽,不僅提供確定的化學成分,還提供了可重複培養的條件。
在我們之前的研究中已成功的將人類多能幹細胞培養在寡玻連蛋白(KGGPQVTRGDVFTMP)嫁接的聚乙烯醇-衣康酸水膠上。但是,一旦我們將誘導人類多能幹細胞進一步分化,與培養在其他細胞外間質相比,人類多能幹細胞較容易從寡玻連蛋白胜肽嫁接的聚乙烯醇-衣康酸水膠上脫附。因此本研究之目的,希望能設計出新胜肽不僅提供早期的細胞增殖,還可以協助後期的細胞分化。所以本實驗在層粘連蛋白(LN)發現了可能的新胜肽,並將新衍生的胜肽嫁接在聚乙烯醇-衣康酸水膠上來研究其中關鍵的細胞與基材結合機制,此次新設計的層粘連蛋白衍生之胜肽(PASYRGDSC和PMQKMRGDVFSP),其中序列裡的RGD基序提供細胞貼附的主要識別系統且有望用於進一步的支持細胞分化。一方面,本研究同時製造幾種不同的設計的層粘連蛋白衍生胜肽,設計不同長度的節鏈結來仿生原來的細胞外間質,評估鏈接的長度和結構效應。另一方面,在胜肽的末端使用或不使用酰胺修飾(-CONH2),用以比較細胞附著的效率。此外,在多能幹細胞培養於合成胜肽嫁接表面上後,評估其四種多能基因(Oct4,Sox2,SSEA-4和Nanog)的表現量。最後檢驗人類胚胎幹細在不同設計的胜肽上對分化能力的影響,從幹細胞分化成間業幹細胞(MSC)和心肌細胞(CM)。
我們的結果將有助於理解現階段培養人類多能幹細胞中細胞與基材結合機制,進而針對不同的使用條件客製專屬的、有利的增長環境。
摘要(英) Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), are attractive source for regenerative tissue engineering. Typically, hPSCs are used to culture on animal feeder cells or secreted protein-coated dishes, such as mouse embryonic fibroblast (MEF) or Matrigel, respectively which secrete extracellular matrices (ECMs) and growth factors for cell attachment but provide uncertain chemical compositions for cell growth. On the other hand, reliable biomaterials such as xeno-free synthetic peptides-immobilized surface, offer not only a chemically defined composition but also reproducible conditions for hPSC cultivation.
In previous studies in our laboratory, hPSCs were cultured on polyvinyl alcohol-co-itaconic acid (PVA-IA) hydrogels, which were conjugated with oligo-vitronectin (KGGPQVTRGDVFTMP) stably. However, once I induced the hPSCs for further differentiation, hPSCs detached much easier comparing to hPSCs cultured on other ECM-coated surface. In this study, I designed new peptides from Laminin (LN), which was a remarkable ECM for cell differentiation in previous studies where the key cell binding mechanism was investigated by using PVA-IA hydrogels. Several new designs of laminin-derived peptide (PASYRGDSC and PMQKMRGDVFSP) were grafted on PVA-IA hydrogels, which provided RGD binding motifs and constituted the major recognition system for hPSC adhesion. These synthetic peptides were investigated by comparing the ability to support long term hPSCs cultivation and differentiation into mesenchymal stem cells (MSCs) and cardiomyocytes (CMs). The different lengths and sequences of joint segment, mimicking the original ECM, were evaluated to investigate the length effect and the effect of structures on hPSC culture and differentiation. Moreover, the C-terminus of peptides were treated with and without amide modification (-CONH2) to compare the efficiency of hPSC attachment. Furthermore, after hPSC cultivation on those synthetic peptides-grafted surface, hPSCs were evaluated for the expression level of four pluripotent protein (Oct4, Sox2, SSEA-4 and Nanog) expression. These results will help understanding of the cell-substrate binding mechanisms in sustaining hPSC culture and differentiation .
關鍵字(中) ★ 幹細胞
★ 生醫材料
關鍵字(英) ★ human pluripotent stem cells
★ biomaterials
論文目次 Abstract I
Index of content IV
Index of Figure VIII
Index of table XII
Chapter 1. Introduction 1
1-1. Pluripotent stem cells 1
1-1-1. Embryonic stem cells 2
1-1-2. Induced pluripotent stem cells 3
1-1-3. The limitations of human embryonic stem cells and induced pluripotent stem cells 4
1-1-4. hPSCs for therapeutic application in future 6
1-2. Characterization of hPSCs 6
1-2-1. Colony formation of hPSCs 8
1-2-2. pluripotent gene expression 8
1-2-3. Immunofluorescence 9
1-2-3. Differentiation ability 9
1-3. The substrates for hPSCs cultivation 12
1-3-1. The feeder cell layers for hPSCs maintenance 12
1-3-2. The feeder-free and xeno-contained proteins for hPSCs cultivation 13
1-3-3. Feeder-free and xeno-free human extracellular matrices 14
1-3-4. Oligopeptides 15
1-3-5. Cell-substrate binding mechanism 17
1-4. Differentiation of hPSCs into mesenchymal stem cells 19
1-4-1. Efficient methods for mesenchymal stem cells differentiation 20
1-4-2. Characterization of mesenchymal stem cells 21
1-5. The goal of this study 21
Chapter 2 Materials and Method 23
2-1. Materials 23
2-1-1. Cell Line 23
2-1-2. Commercial Culture Dishes 23
2-1-3. Commercial Coated Substrates 23
2-1-4. Medium and Others 23
2-1-5. The chemicals in oligopeptide-grafted dish 24
2-1-6. Chemical for immunostaining 31
2-1-7. Chemical for flowcytometry 32
2-2. Cell culture 32
2-2-1. human pluripotent stem maintenance 32
2-2-2. Passage method of human pluripotent stem cells 32
2-2-3. Preparation of PVA-IA hydrogel coated dish 33
2-2-4. Preparation of oligopeptides grafted PVA-IA hydrogel 34
2-2-5. Passage method of hPSCs cultured on peptide-grafted PVA-IA dish 34
2-2-6. Cryopreservation of human pluripotent stem cells 35
2-2-7. Thawing of human pluripotent stem cells 35
2-3. Characterization of Dish Surface 36
2-3-1. Atomic Force Microscope (AFM) 36
2-3-2. X-ray Photoelectron Spectroscopy (XPS) 36
2-3-3. Zeta potential 37
2-4. Characterization of hPSCs 37
2-4-1. Expansion Fold and Doubling Time of hPSCs 37
2-4-2. Differentiation Ratio of hPSCs 38
2-4-3. Immunostaining of Cells 38
2-4-4. Embryoid Body Formation 40
2-5. Mesenchymal stem cells differentiation 40
2-5-1. The protocol of MSCs differentiation 40
2-5-2. Flow-cytometry measurement for MSCs differentiation 42
Chapter 3 Results and Discussion 43
3-1. Cultivation of hPSCs on PVA-IA hydrogels grafted with oligopeptides 43
3-1-1. Determination of key domains derived from laminin-111 43
3-1-2-1. Cultivation of hPSCs on PVA-IA hydrogels grafted with oligopeptides derived from several modification of laminin α5 chain 45
3-1-2-2. Expansion fold and differentiation of hiPSCs cultured on PVA-IA hydrogels conjugated with LN-α5 derived oligopeptides 48
3-1-3. Cultivation of hPSCs on PVA-IA hydrogels grafted with different modification of laminin β4 chain derived oligopeptides 52
3-1-4. Expansion fold and differentiation of hiPSCs cultured on PVA-IA conjugated with LN-β4 derived oligopeptides 56
3-1-5. The long-term cultivation of hPSCs on PVA-IA hydrogels grafted with oligopeptides 60
3-1-6. Immunostaining of hESCs cultured on PVA-IA hydrogels grafted with LN and VN derived oligopeptides having different designs 63
3-1-7. Embryoid body formation of hPSCs on PVA-IA hydrogels grafted with VN and LN derived oligopeptides. 68
3-1-8. MSC differentiation from adherent hESCs on oligopeptides grafted surface 72
3-2. Characterization of PVA-IA hydrogels conjugated with design of oligopeptides 74
3-2-1. Atomic force microscope scanning measurements of PVA-IA hydrogels conjugated with design of oligopeptides 75
3-2-2. X-ray photoelectron spectroscopy analysis of PVA-IA hydrogels conjugated with design of oligopeptides 78
3-2-3. Zeta potential analysis of the effect of surface charge on PVA-IA hydrogels conjugated with design of oligopeptides 83
Chapter 4 Conclusion 85
Reference 87
Appendix 97
參考文獻 [1] B. Robert, J.K. Thomas, "TRANSPLANTATION OF LIVING NUCLEI FROM BLASTULA CELLS INTO ENUCLEA TED FROGS′ EGGS", PNAS 38(5) (1952) 455-463.
[2] M.J. Evans, M.H. Kaufman, "Establishment in culture of pluripotential cells from mouse embryos", Nature 292(5819) (1981) 154-156.
[ 3] M.D. Pierschbacher, E. Ruoslahti, "Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule", Nature 309(1) (1984) 30-33.
[4] S. Suzuki, et al., "Complete Amino Acid Sequence of Human Vitronectin Deduced From cDNA. Similarity of Cell Attachment Sites in Vitronectin and Fibronectin", EMBO Rep 4(10) (1985) 2519-2524.
[5] I. Oldberg, et al., "Identification of a Bone Sialoprotein Receptor in Osteosarcoma Cells", J Biol Chem 263(36) (1988) 19433-19436.
[6] T. Ken-ichiro, et al., "A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth", J. Biol. Chem. 264(27) (1989) 16174-16182.
[7] N. Motoyoshi, et al., "The All-D-configuration Segment Containing the IKVAV Sequence of Laminin A Chain Has Similar Activities to the All-L-peptide in Vitro and in Vivo", J Biol Chem 267(20) (1992) 14118-14121.
[8] Y. Hirano, et al., "Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines", J Biomater Sci Polym Ed 4(3) (1993) 235-43.
[9] J.F. Howard, L. Donald, B. Michael, "Nonenzymatic Glycosylation of Laminin and the Laminin Peptide CIKVAVS Inhibits Neurite Outgrowth", Diabetes. 42(4) (1993) 509-513.
[10] Y. Tamada, Y. Ikada, "Effect of Preadsorbed Proteins on Cell Adhesion to Polymer Surfaces", J Colloid Interface Sci 155(1) (1993) 334-339.
[11] P.R. John, et al., "Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. II", Journal of Biomedical Materials Research 29(1) (1995) 779-785.
[12] N. Motoyoshi, et al., "Identification of Cell Binding Sites in the Laminin α1 Chain Carboxyl-terminal Globular Domain by Systematic Screening of Synthetic Peptides", J Biol Chem 270(35) (1995) 20583-20590.
[13] R.S. Bhatnagar, J.J. Qian, C.A. Gough, "The role in cell binding of a beta-bend within the triple helical region in collagen alpha 1 (I) chain: structural and biological evidence for conformational tautomerism on fiber surface", J Biomol Struct Dyn 14(5) (1997) 547-60.
[14] C.G. Knight, et al., "Identification in collagen type I of an integrin alpha2beta1-binding site containing an essential GER sequence", J Biol Chem 273(50) (1998) 33287-33294.
[15] M. Nomizu, et al., "Cell binding sequences in mouse laminin alpha 1 chain", J Biol Chem 273(46) (1998).
[16] J.A. Thomson, et al., "Embryonic Stem Cell Lines Derived from Human Blastocysts", SCIENCE 282(1) (1998) 1145-1147.
[17] C.G. Knight, et al., "The collagen-binding A-domains of integrins alpha1beta1 and alpha2beta1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens", J Biol Chem. 275(1) (2000) 35-40.
[18] C. Xu, et al., "Feeder-free growth of undifferentiated human embryonic stem cells", Nat Biotechnol. 19(10) (2001) 971-974.
[19] R. Bhatia, A.D. Williams, H.A. Munthe, "Contact with fibronectin enhances preservation of normal but not chronic myelogenous leukemia primitive hematopoietic progenitors", Exp Hematol 30(1) (2002) 324-332.
[20] M. Makino, et al., "Identification of cell binding sites in the laminin alpha5-chain G domain", Exp Cell Res 277(1) (2002) 95-106.
[21] R.M. Salasznyk, et al., "Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells", J Biomed Biotechnol 2004(1) (2003) 24-34.
[22] S.Y. Boateng, et al., "RGD and YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes", Am J Physiol Cell Physiol 288(1) (2005) C30-8.
[23] N. Suzuki, F. Yokoyama, M. Nomizu, "Functional sites in the laminin alpha chains", Connect Tissue Res 46(3) (2005) 142-52.
[24] N. Findikli, N.Z. Candan, S. Kahraman, "Human embryonic stem cell culture; current limitations and novel strategies", Reprod. Biomed. Online 13(4) (2006) 581-590.
[25] J. George, Y. Kuboki, T. Miyata, "Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds", Biotechnol Bioeng 95(3) (2006) 404-11.
[26] X.S. Jiang, et al., "Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells", Biomaterials 27(13) (2006) 2723–2732.
[27] L.Y. Santiago, et al., "Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications", Biomaterials 27(15) (2006) 2962-9.
[28] K. Saha, et al., "Biomimetic interfacial interpenetrating polymer networks control neural stem cell behavior", J Biomed Mater Res A 81(1) (2007) 240-9.
[29] K. Takahashi, et al., "Induction of pluripotent stem cells from adult human fibroblasts by defined factors", Cell 131(5) (2007) 861-72.
[30] S.R. Braam, et al., "Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin", Stem Cells 26(9) (2008) 2257-65.
[31] A. Higuchi, et al., "Polymeric Materials for Ex vivo Expansion of Hematopoietic Progenitor and Stem Cells", Polymer Reviews 49(3) (2009) 181-200.
[32] B. Lo, L. Parham, "Ethical issues in stem cell research", Endocr Rev 30(3) (2009) 204-13.
[33] I.S. Park, et al., "The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism", Biomaterials 30(36) (2009) 6835-43.
[34] S. Rungarunlert, et al., "Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors", World J Stem Cells 1(1) (2009) 11-21.
[35] D.A. Brafman, et al., "Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces", Biomaterials 31(34) (2010) 9135-44.
[36] M.J. Cooke, et al., "Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins", J Biomed Mater Res A 93(3) (2010) 824-32.
[37] J.R. Klim, et al., "A defined glycosaminoglycan-binding substratum for human pluripotent stem cells", Nat Methods 7(12) (2010) 989-94.
[ 38] P. Kolhar, et al., "Synthetic surfaces for human embryonic stem cell culture", J Biotechnol 146(3) (2010) 143-6.
[39] Y. Mei, et al., "Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells", Nat Mater 9(9) (2010) 768-78.
[40] Z. Melkoumian, et al., "Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells", Nat Biotechnol 28(6) (2010) 606-10.
[41] H. Studenovska, et al., "Synthetic poly(amino acid) hydrogels with incorporated cell-adhesion peptides for tissue engineering", J Tissue Eng Regen Med 4(6) (2010) 454-63.
[42] L.G. Villa-Diaz, et al., "Synthetic polymer coatings for long-term growth of human embryonic stem cells", Nat Biotechnol 28(6) (2010) 581-3.
[43] G. Chen, et al., "Chemically defined conditions for human iPSC derivation and culture", Nat Methods 8(5) (2011) 424-9.
[44] A. Higuchi, et al., "Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells", Chem Rev 111(5) (2011) 3021-35.
[45] E.F. Irwin, et al., "Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells", Biomaterials 32(29) (2011) 6912-9.
[46] S. Kriks, et al., "Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson′s disease", Nature 480(7378) (2011) 547-51.
[47] B. Valamehr, et al., "Developing defined culture systems for human pluripotent stem cells", Regen Med 6(5) (2011) 623-34.
[48] J. Zoldan, et al., "The influence of scaffold elasticity on germ layer specification of human embryonic stem cells", Biomaterials 32(36) (2011) 9612-21.
[49] A. Higuchi, et al., "Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation", Chem Rev 112(8) (2012) 4507-40.
[50] G. Meng, S. Liu, D.E. Rancourt, "Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions", Stem Cells Dev 21(11) (2012) 2036-48.
[51] C.L. Mummery, et al., "Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview", Circ Res 111(3) (2012) 344-58.
[52] N. Nishishita, et al., "Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naive state", PLoS One 7(6) (2012) e38389.
[53] M.S. Rao, N. Malik, "Assessing iPSC reprogramming methods for their suitability in translational medicine", J Cell Biochem 113(10) (2012) 3061-8.
[54] D.A. Robinton, G.Q. Daley, "The promise of induced pluripotent stem cells in research and therapy", Nature 481(7381) (2012) 295-305.
[55] Z. Rong, et al., "A scalable approach to prevent teratoma formation of human embryonic stem cells", J Biol Chem 287(39) (2012) 32338-45.
[56] A.M. Ross, et al., "Synthetic substrates for long-term stem cell culture", Polymer 53(13) (2012) 2533-2539.
[57] L.G. Villa-Diaz, et al., "Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates", Stem Cells 30(6) (2012) 1174-81.
[58] S. Yamanaka, "Induced pluripotent stem cells: past, present, and future", Cell Stem Cell 10(6) (2012) 678-684.
[59] J. Zhang, et al., "Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method", Circ Res 111(9) (2012) 1125-36.
[60] I.D. Odell, D. Cook, "Immunofluorescence techniques", J Invest Dermatol 133(1) (2013) e4.
[61] S. Bhattacharya, et al., "High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry", J Vis Exp (91) (2014) 52010.
[62] M. Bradshaw, et al., "Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration", Sci Rep 4 (2014) 6903.
[63] A.D. Celiz, et al., "Materials for stem cell factories of the future", Nat Mater 13(1) (2014) 570-579.
[64] A. Higuchi, et al., "Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing", Progress in Polymer Science 39(7) (2014) 1348-1374.
[65] E.A. Kimbrel, et al., "Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties", Stem Cells Dev 23(14) (2014) 1611-24.
[66] X. Li, et al., "Short laminin peptide for improved neural stem cell growth", Stem Cells Transl Med 3(5) (2014) 662-70.
[67] S. Rodin, et al., "Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment", Nat Commun 5 (2014) 3195.
[68] K. Tano, et al., "A novel in vitro method for detecting undifferentiated human pluripotent stem cells as impurities in cell therapy products using a highly efficient culture system", PLoS One 9(10) (2014) e110496.
[69] X. Wang, et al., "Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis", Stem Cell Reports 3(1) (2014) 115-30.
[70] A. Higuchi, et al., "Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity", Sci Rep 5 (2015) 18136.
[71] R.V. Nelakanti, N.G. Kooreman, J.C. Wu, "Teratoma formation: a tool for monitoring pluripotency in stem cell research", Curr Protoc Stem Cell Biol 32 (2015) 4A 8 1-4A 8 17.
[72] H. Wang, X. Luo, J. Leighton, "Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation", Biochem Insights 8(Suppl 2) (2015) 15-21.
[73] P.D. Yurchenco, "Integrating Activities of Laminins that Drive Basement Membrane Assembly and Function", Curr Top Membr 76 (2015) 1-30.
[74] Q. Zhao, et al., "MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs", Proc Natl Acad Sci U S A 112(2) (2015) 530-5.
[75] O. Forostyak, G. Dayanithi, S. Forostyak, "CNS Regenerative Medicine and Stem Cells", Opera Med Physiol 2(1) (2016) 55-62.
[76] J. Jia, et al., "Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications", Acta Biomater 45 (2016) 110-120.
[77] L.K. Kanninen, et al., "Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells", Biomaterials 103 (2016) 86-100.
[78] P. Maturavongsadit, et al., "Adhesive peptides conjugated PAMAM dendrimer as a coating polymeric material enhancing cell responses", Chinese Chemical Letters 27(9) (2016) 1473-1478.
[79] M.T.X. Nguyen, et al., "Differentiation of Human Embryonic Stem Cells to Endothelial Progenitor Cells on Laminins in Defined and Xeno-free Systems", Stem Cell Reports 7(4) (2016) 802-816.
[80] A. Romito, G. Cobellis, "Pluripotent Stem Cells: Current Understanding and Future Directions", Stem Cells Int 2016 (2016) 9451492.
[81] X. Wang, et al., "Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage", Stem Cells 34(2) (2016) 380-91.
[82] G.R. Alas, et al., "Peptide-functionalized poly[oligo(ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell adhesion", Acta Biomater 59 (2017) 108-116.
[83] Y. M. Chen, et al., "Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs", Sci Rep 7 (2017) 45146.
[84] A. Higuchi, et al., "Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects", Lab Invest 97(10) (2017) 1167-1179.
[85] A. Higuchi, et al., "Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells", Progress in Polymer Science 65 (2017) 83-126.
[86] S. Muduli, et al., "Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides", Journal of Polymer Engineering 37(7) (2017) 647-660.
[87] C. Roux, et al., "Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo", Front Immunol 8 (2017) 1991.
[88] T. Simon, J.S. Bromberg, "Regulation of the Immune System by Laminins", Trends Immunol 38(11) (2017) 858-871.
[89] W. Sun, et al., "Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide", J Tissue Eng Regen Med 11(5) (2017) 1532-1541.
[90] A. Higuchi, et al., “Stem Cell Culture on Polymer Hydrogels", Hydrogels, (2018) 357-408.
[91] M. Hirata, T. Yamaoka, "Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages", Acta Biomater 65 (2018) 44-52.
[92] V. Irawan, A. Higuchi, T. Ikoma, "Physical cues of biomaterials guide stem cell fate of differentiation: The effect of elasticity of cell culture biomaterials", Open Physics 16(1) (2018) 943-955.
[93] E. Li, et al., "Generation of Mesenchymal Stem Cells from Human Embryonic Stem Cells in a Complete Serum-free Condition", Int J Biol Sci 14(13) (2018) 1901-1909.
[94] E.M. Ovadia, D.W. Colby, A.M. Kloxin, "Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells", Biomater Sci 6(6) (2018) 1358-1370.
[95] S. Selvaraj, R.C.R. Perlingeiro, “Induced Pluripotent Stem Cells for Neuromuscular Diseases: Potential for Disease Modeling, Drug Screening, and Regenerative Medicine”, Biomedical Sciences, 2018.
[96] A.N. Sohi, et al., "Synergistic effect of co-immobilized FGF-2 and vitronectin-derived peptide on feeder-free expansion of induced pluripotent stem cells", Mater Sci Eng C Mater Biol Appl 93 (2018) 157-169.
[97] T.C. Sung, et al., "Human Pluripotent Stem Cell Culture on Polyvinyl Alcohol-Co-Itaconic Acid Hydrogels with Varying Stiffness Under Xeno-Free Conditions", J Vis Exp (132) (2018).
[98] M.E. Yassa, et al., "The impact of growth factors on human induced pluripotent stem cells differentiation into cardiomyocytes", Life Sci 196 (2018) 38-47.
[99] P. Zhou, et al., "Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface", Colloids Surf B Biointerfaces 171 (2018) 451-460.
[100] S. Ge, et al., "Human ES-derived MSCs correct TNF-alpha-mediated alterations in a blood-brain barrier model", Fluids Barriers CNS 16(1) (2019) 18.
[101] P. Karagiannis, et al., "Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development", Physiol Rev 99(1) (2019) 79-114.
[102] J.Z. Kechagia, J. Ivaska, P. Roca-Cusachs, "Integrins as biomechanical sensors of the microenvironment", Nat Rev Mol Cell Biol 20(8) (2019) 457-473.
[103] C. Xu, M. S., Inokuma, J. D., K. G., P. K., J.D. G., M.K. C., "Human Pluripotent Stem Cell Culture- Considerations for Maintenance, Expansion, and Therapeutics", Nat. Biotechnol. 19(1) (2001) 971-974.
[104] Li-Hua, C. (2017). Human Pluripotent Stem Cells Cultured on Recombinant Human Vitronectin-Grafted Hydrogels by Adjusting Surface Charge and Elasticity
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明