參考文獻 |
1. Terech, P.; Weiss, R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem. Rev. 1997, 97, 3133-3160.
2. Sangeetha, N. M.; Maitra, U. Supramolecular gels: Functions and uses. Chem. Soc. Rev. 2005, 34, 821-836.
3. Maity, G. C., Low Molecular Mass Gelators of Organic Liquids. J. Phys. Sci. 2007, 11, 156-171.
4. von Lipowitz, A. Versuche und Resultate über die Löslichkeit der Harnsäure Liebigs Ann. Chem. Pharm. 1841, 38, 348-355.
5. Flory, P. J. Introductory Lecture. Faraday Discuss. Chem. Soc. 1974, 57, 7-18
6. Lloyd, D. J. The problem of gel structure, In Colloid Chemistry, Alexander, J.; ed.
The Chemical Catalogue Company, New York, USA, 1926, 767-782.
7. Yu, G., Yan, X., Han, C., Huang, F. Characterization of supramolecular gels Chem. Soc. Rev., 2013, 42, 6697-6722.
8. Piepenbrock, M. O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Metal- and anion-binding supramolecular gels J. W. Chem. Rev. 2010, 110, 1960-2004.
9. Abdallah, D. J.; Weiss, R. G. n-Alkanes Gel n-Alkanes (and Many Other Organic Liquids) Langmuir 2000, 16, 352-355.
10. Twieg, R. J.; Russell, T. P.; Siemens, R.; Rabolt, J. F. Observations of a gel phase in binary mixtures of semifluorinated n-alkanes with hydrocarbon liquids Macromolecules 1985, 18, 1361-1362.
11. Tomalia, D. A. Fluorine makes a difference Nat. Mater. 2003, 2, 711-712.
12. Young, C. L. Upper critical solution temperature of perfluoro-n-alkane and n-alkane mixtures Trans. Faraday Soc. 1969, 65, 2639-2644.
13. Shi, C.; Huang Z.; Kilic, S.; Xu J.; Enick, R. M.; Beckman, E. J.; Carr, A. J.; Melendez, R. E.; Hamilton, A. E. The Gelation of CO2: A Sustainable Route to the Creation of Microcellular Materials Science 1999, 286, 1540-1543.
14. Esch, J. H. van; Feringa, B. L. New Funtional Materials Based on Self-Assembling Organogels : Form Secondipity towards Design Angew. Chem. Int. Ed. 2000, 39, 2663-2666.
15. George, M.; Snyder, S. L.; Terech, P.; Glinka C. J.; Weiss, R. G. N-Alkyl Perfluoroalkanamides as Low Molecular-Mass Organogelators. J. Am. Chem. Soc. 2003, 125, 10275-10283.
16. George, M.; Snyder, S. L.; Terech, P.; Weiss, R. G. Gelation of Perfluorinated Liquids by N-Alkyl Perfluoroalkanamides. Langmuir 2005, 21, 9970-9977.
17. Gan, J.; Bakkari, M. E.; Belin, C.; Margottin, C. L.; Godard, P.; Pozzo, J.L.; Vincent, J.M. A triblock fluorous surfactant as a specific gelator for perfluorocarbons. Chem. Commun., 2009, 34, 5133-5134.
18. Kumari, H.; Armitage, S.E.; Kline, S.R.; Damodaran, K.K.; Kennedy, S.R.; Atwood, R.L.; Steed, J.L. Fluorous ‘ponytails’ lead to strong gelators showing thermally induced structure evolution. Soft Matter, 2015, 11, 8471-8478.
19. Hashimoto, M.; Ujiie; S.; Mori, A. Low Molecular Weight Gelators with Hexagonal Order in Their Liquid‐Crystal Phases and Gel States: 5‐Cyano‐2‐(3,4,5‐trialkoxybenzoylamino)tropones. Adv. Mater. 2003, 15, 797-800.
20. Zhai, Y.; Chai, W.; Cao, W.; Sun, Z.; Huang, Y. Organogelators based on p-alkoxylbenzamide and their self-assembling properties. Front. Chem. Sci. Eng. 2015, 9,488-493.
21. Podder, D.; Chowdhury, S.R.; Nandi, S. K.; Haldar, D. Tripeptide based super-organogelators: structure and function.New J. Chem., 2019, 43, 3743-3749.
22. George, S. J.; Ajayaghosh, A. Self‐Assembled Nanotapes of Oligo(p‐phenylene vinylene)s: Sol–Gel‐Controlled Optical Properties in Fluorescent π‐Electronic Gels. Chem. Eur. J. 2005, 11, 3217-3227.
23. Wu1rthner, F.; Hanke, B.; Lysetska, M.; Lambright, G.; Harms, G. S. Org. Lett. 2005, 7, 6, 967-970.
24. Yang, H. K.; Zhao, H.; Yang, P. R.; Huang, C.H. Gelation of a Highly Fluorescent Urea-Functionalized Perylene Bisimide Dye. Colloids Surf. A 2017, 535, 242-250.
25. Shan, Y.; Li, S.; Luo, D.; Wang, R.; Wu, F.; Zhong, C.; Zhu, L. Fluorescent nanofiber film based on a simple organogelator for highly efficient detection of TFA vapour. New J. Chem. 2018, 42, 2089-2093.
26. Breton, G. W.; Vang, X. Photodimerization of Anthracene. J. Chem. Educ. 1998, 75, 81-82.
27. Xu, J. F.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Dynamic Covalent Bond Based on Reversible Photo [4 + 4] Cycloaddition of Anthracene for Construction of Double-Dynamic Polymers. Org. Lett. 2013, 15, 24, 6148-6151.
28. Klaper, m.; Wessig, P.; Linker, T. Base catalysed decomposition of anthracene endoperoxide. Chem. Commun., 2016, 52, 1210-1213.
29. Fidder, H.; Lauer, A.; Freyer, W.; Koeppe, B.; Heyne, K. Photochemistry of Anthracene-9,10-endoperoxide. J. Phys. Chem. A, 2009, 113, 6289-6296.
30. Wang, C.; Zhang, D.; Wiang, J.; Zhu, D. New Organogels Based on an Anthracene Derivative with One Urea Group and Its Photodimer: Fluorescence Enhancement after Gelation. Langmuir 2007, 23, 9195-9200.
31. Rajamalli, P.; Prasad, E. Low Molecular Weight Fluorescent Organogel for Fluoride Ion Detection. Org. Lett. 2011, 13, 3714-3717.
32. Wei, J.; Chai, Q.; He, L.; Bai, B.; Wang, H.; Li, M. An anthracene-based organogel with colorimetric fluoride-responsive and fluorescence-enhanced properties. Tetrahedron 2016, 72, 3073-3076.
33. Bai, B.; Zhang, M.; Ji, N.; Wei, Wang, H.; Li, M. E–Z isomerization of the –C[double bond, length as m-dash]N– bond in anthracene-based acylhydrazone derivatives under visible light. Chem. Commun. 2017, 53, 2693-2696.
34. Zhang, X.; Liu, J.; Gao, Y.; Hao, J.; Hu, J.; Ju, Y. Multi-stimuli-responsive hydrogels of gluconamide-tailored anthracene. Soft Matter 2019, 15, 4662-4668.
35. Mondal, S.; Bairi, P.; Das, S.; Nandi, A. K. Phase selective organogel from an imine based gelator for use in oil spill recovery. J. Mater. Chem. A 2019, 7, 381-392.
36. Beck, J. B.; Rowan, S. J. Multistimuli, Multiresponsive Metallo-Supramolecular Polymers. J. Am. Chem. Soc. 2003, 125, 13922-13923.
37. Kawano, S. I.; Fujita, N.; Shinkai, S. A Coordination Gelator That Shows a Reversible Chromatic Change and Sol−Gel Phase-Transition Behavior upon Oxidative/Reductive Stimuli. J. Am. Chem. Soc. 2004, 126, 8592-8593.
38. Chang, K. C.; Lin, J. L.; Shen, Y. T.; Hung, C. Y.; Chen, C. Y.; Sun, S. S. Synthesis and Photophysical Properties of Self‐Assembled Metallogels of Platinum(II) Acetylide Complexes with Elaborate Long‐Chain Pyridine‐2,6‐Dicarboxamides. Chem. - Eur. J. 2012, 18, 1312-1321.
39. Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties. J. Am. Chem. Soc. 2015, 137, 11590-11593.
40. Duan, P.; Yanai, N.; Nagatomi, H.; Kimizuka, N. Photon Upconversion in Supramolecular Gel Matrixes: Spontaneous Accumulation of Light-Harvesting Donor–Acceptor Arrays in Nanofibers and Acquired Air Stability. J. Am. Chem. Soc. 2015, 137, 1887-1894.
41. Kim, D.; Kwon, J. E.; Park, S. Y. Fully Reversible Multistate Fluorescence Switching: Organogel System Consisting of Luminescent Cyanostilbene and Turn‐On Diarylethene. Adv. Funct. Mater. 2018, 28, 1706213.
42. Gao, Z.; Han, Y.; Wang, F. Cooperative supramolecular polymers with anthracene‒endoperoxide photo-switching for fluorescent anti-counterfeiting. Nat. Commun. 2018, 9, 3977.
43. Han, Y.; Liu, M.; Zhong, R.; Gao, Z.; Chen, Z.; Zhang, M.; Wang, F. Photoresponsiveness of Anthracene-Based Supramolecular Polymers Regulated via a σ-Platinated 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene Photosensitizer. Inorg. Chem. 2019, 58, 12407-12414.
44. Mo, S.; Meng, Q; Wan, S.; Su, Z.; Yan, H.; Tang, B. Z.; Yin, M. Tunable Mechanoresponsive Self‐Assembly of an Amide‐Linked Dyad with Dual Sensitivity of Photochromism and Mechanochromism. Adv. Funct. Mater. 2017, 27, 1701210.
45. Sun, Q.; Wang, H.; Xu, X.; Lu, Y.; Xue, S.; Zhang, H.; Yang, W. 9,10-Bis((Z)-2-phenyl-2-(pyridin-2-yl)vinyl)anthracene:Aggregation-induced emission, mechanochromic luminescence, and reversible volatile acids-amines switching. Dyes Pigm. 2018, 149, 407-414.
46. Ma, Z.; Ji, Y.; Lan, Y.; Kuang, G.-C.; Jia, X. Two novel rhodamine-based molecules with different mechanochromic and photochromic properties in solid state. J. Mater. Chem. C 2018, 6, 2270-2274.
47. Naeem, K. C.; Subhakumari, A.; Varughesec, S.; Nair, V. C. Heteroatom induced contrasting effects on the stimuli responsive properties of anthracene based donor–π–acceptor fluorophores. J. Mater. Chem. C 2015, 3, 10225-10231.
48. Hsu, L. Y.; Maity, S.; Matsunaga, Y.; Hsu, Y. F.; Liu, Y. F.; Peng, S. M.; Shinmyozu, T.; Yang, J. S. Photomechanochromic vs. mechanochromic fluorescence of a unichromophoric bimodal molecular solid: multicolour fluorescence patterning. Chem. Sci. 2018, 9, 8990-9001.
49. Seidel, N.; Hahn, T.; Liebing, S.; Seichter, W.; Kortus, J.; Weber, E. Synthesis and properties of new 9,10-anthraquinone derived compounds for molecular electronics. New J. Chem. 2013, 37, 601-610.
50. Tsvetkov, N. P.; Gonzalez-Rodriguez, E.; Hughes, A.; Gomes, G. D. P. ; White, F. D.; Kuriakose, F.; Alabugin, I. V. Radical Alkyne peri-Annulation Reactions for the Synthesis of Functionalized Phenalenes, Benzanthrenes, and Olympicene. Angew. Chem. Int. Ed. 2018, 57, 651-3655.
51. Xiao, Q.; Ranasinghe, R. T.; Tang, A. P. M.; Brown, T. Naphthalenyl- and anthracenyl-ethynyl dT analogues as base discriminating fluorescent nucleosides and intramolecular energy transfer donors in oligonucleotide probes. Tetrahedron 2007, 63, 3483-3490.
52. Horváth, G.; Rusa, C.; Köntös, Z.; Gerencsér, J.; Huszthy, P. A new efficient method for the preparation of 2,6-pyridinedimethyl ditosylates from dimethyl 2,6-pyridinedicarboxylates. Synth. Commun. 1999, 3719-3731.
53. Pryor, K. E.; Shipps, G. W.; Skyler, D. A.; Rebek, J. The activated core approach to combinatorial chemistry: A selection of new core molecules. Tetrahedron 1998, 54, 4107-4124.
54. Das, K.; Nakade, H.; Penelle, J.; Rotello, V. M. The activated core approach to combinatorial chemistry: A selection of new core molecules. Macromolecules 2004, 37, 310-314.
55. Selva, M.; Tundo, P.; Perosa, A. Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. J. Org. Chem. 2003, 68, 19, 7374-7378.
56. Kapustikova, I.; Bak, A.; Gonec, T.; Kos, J.; Kozik, T.; Jampilek, J. Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides. Molecules 2018, 23, 1635.
57. D-C, E; Kelly, B.; Rozas, I One-step double reduction of aryl nitro and carbonyl groups using hydrazine. Tetrahedron Lett. 2011, 52, 6702-6704.
58. Buckingham, F; Calderwood, S.; Checa, B.; Keller, T.; Tredwell, M.; Collier, T. L.; Newington, I. M.; Bhalla, R.; Glaser, M.; Gouverneur, V. Oxidative fluorination of N-arylsulfonamides. J. Fluor. Chem. 2015, 180, 33-39.
59. Dijk, T. V.; Burck, S.; Rong, M. K.; Rosenthal, A. J.; Nieger, M.; Slootweg, J. C.; Lammertsma, K. Facile Synthesis of Phosphaamidines and Phosphaamidinates using Nitrilium Ions as an Imine Synthon. Angew. Chem. Int. Ed. 2014, 53, 9068 -9071.
60. Wang, W.; Kluge, J. A.; Leisk, G. G.; Kaplan, D. L. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 2008, 29, 1054-1064.
61. 蔡孟學,疏氟效應及鉑-鉑金屬作用力之超分子凝膠自組裝行為之研究,碩士論文,國立中央大學化學研究所(2013)。
62. 呂幸紋,設計並合成含有醯胺官能基的乙炔蒽和乙炔芘衍生物之有機凝膠分子,碩士論文,國立台灣師範大化學研究所(2014)。
63. 紀國棟,含醯胺官能基之乙炔蒽衍生物的超分子自組裝行為之研究,碩士論文,國立中正大學化學暨生物化學研究所(2020)。
64. Chan, M. H.-Y.; Ng, M.; Leung, S. Y.-L.; Lam, W. H.; Yam, V. W.-W. Synthesis of Luminescent Platinum(II) 2,6-Bis(N-dodecylbenzimidazol-2-yl)pyridine Foldamers and Their Supramolecular Assembly and Metallogel Formation. J. Am. Chem. Soc. 2017, 139, 8639-8645.
65. Imura, T; Ikeda, S.; Aburai, K.; Taira, T; Kitamoto, D. Interdigitated Lamella and Bicontinuous Cubic Phases Formation from Natural Cyclic Surfactin and Its Linear Derivative. J. Oleo sci. 2013, 62, 499-503.
66. Hashimoto, Y.; Sato, T.; Goto, R.; Nagao, Y.; Mitsuishi, M.; Naganob, S.; Matsui, J. In-plane oriented highly ordered lamellar structure formation of poly(N-dodecylacrylamide) induced by humid annealing. RSC Adv. 2017, 7, 6631-6635.
67. Tsai, M. S.; Tsai, S. Y.; Huang, Y. F.; Wang, C. L.; Sun, S. S.; Yang, J. S. Hydrogen Bonding-Induced H-Aggregation for Fluorescence Turn-On of the GFP Chromophore: Supramolecular Structural Rigidity. Chem. Eur. J. 2020, 26, 5942-5945.
68. Iannone, V.; Barile1, M.; Lecce1, L. Automated fabrication of hybrid thermoplastic prepreg material to be processed by In-Situ Consolidation Automated Fiber Placement process. MATEC Web of Conferences 2018, 188, 01024.
69. Rakstys, K.; Saliba, M.; Gao, P.; Gratia, P.; Kamarauskas, E.; Paek, S.; Jankauskas, V.; Nazeeruddin, M. K. Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency. Angew. Chem. Int. Ed. 2016, 55, 1-6.
|