博碩士論文 107223025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.117.107.188
姓名 黃柏程(Bo-Chen Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含聯噻吩之環釕金屬染料的設計與合成並應用於染料敏化太陽能電池
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 染料敏化太陽能電池 (Dye Sensitized Solar Cell, 簡稱 DSC ) 因成本低廉、製造簡易、色彩多樣化及室內弱光高效率發電的特性,具有發展的潛力。實驗室合成出的染料DUY29有不錯的光伏表現,然而卻仍有兩個缺點:DUY29有高的HOMO能階,不利電解質還原染料;DUY29染料因體積大,在TiO2膜上有低的吸附量,導致元件有低的Jsc值。本研究以DUY29結構為基礎,用dithieno[3,2-b:2’,3’-d] thiophene (簡稱tThp) 取代DUY29中的 thieno-[2,3-b]thiophene (簡稱cis-fThp) 輔助配位基,降低所合成環金屬錯合物的HOMO能階,合成出HBC30;以Thiophene 取代DUY29的 cis-fThp與2,3-dihydro-thieno-[3,4-b][1,4]dioxine (簡稱EDOT),分別合成出HBC23和HBC31,可縮小錯合物體積。HBC23、HBC30與HBC31 (簡稱HBC系列染料)和實驗室所合成之DUY28與DUY29 (簡稱DUY系列)染料的HOMO能階由高到低為:DUY29 > HBC31 > HBC23 > DUY28 > HBC30。其中HBC23雖然HOMO能階不是最低的,但有最高的染料吸附量,所敏化之元件能將光更有效的轉換成電流,因此元件有最高的光電轉換效率,達8.62%。
摘要(英) Dye sensitized solar cell (DSC) is known for its low cost, great variety of colors and high efficiency under dim-light condition. Our Lab members previously had synthesized cycloruthenated sensitizer coded DUY29, which performs good photovoltaic properties, but has two drawbacks: First, DUY29’s has high HOMO potential which is unfavorable for dye regeneration; Second, the dye-loading on TiO2 thin film is small due to its large molecular size, resulting in a low short-curcuit current density (Jsc). This work intends to develop high efficient dyes based on DUY29. We replace thieno-[2,3-b]thiophene (cis-fThp) with the dithieno[3,2-b:2’,3’-d] thiophene (tThp) on DUY29 for lowering the HOMO potential to form HBC30; replace cis-fThp with thiophene (Th) or 2,3-dihydro-thieno-[3,4-b][1,4]dioxine (EDOT) with thiophene for decreasing the molecule size to form HBC23 and HBC31, respectively. Compared with the previously prepared DUY28 and DUY29 (DUY series) dyes. The order of the HOMO potential is DUY29 > HBC31 > HBC23 > DUY28 > HBC30. Although the HOMO potential of HBC23 is not the lowest, the dye loading (on TiO2 thin film) is the highest, resulting in the highest Jsc of DSC device. As a result, the power conversion efficiency of HBC23 sensitized solar cell is the highest, reaching 8.62 %.
關鍵字(中) ★ 環釕金屬
★ 染料敏化太陽能電池
★ 聯噻吩
關鍵字(英)
論文目次 摘要 i
Abstract ii
圖片摘要 iv
謝誌 v
第一章 、緒論 1
1-1、前言 1
1-2、太陽能電池的發展及分類 1
1-3、染料敏化太陽能電池的架構 3
1-4、染料敏化太陽能電池的工作原理 3
1-5、染料敏化電池的發展與染料種類 5
1-6、釕金屬錯合物染料(Ruthenium Metal Complex) 8
1-6-1、高效率釕金屬錯合物染料的條件 8
1-6-2、具代表性的釕金屬錯合物染料N3和N719 9
1-6-3、環釕金屬錯合物(Cyclometalated Ruthenium Complex)染料的優勢 11
1-7、 提高環釕金屬染料所敏化元件光電轉換率的分子設計 14
1-7-1、DSC環金屬染料DUY29的缺點 14
1-7-2、環釕金屬染料HOMO越低所敏化元件有越高的光電轉換效率 15
1-7-3、環金屬配位基取代基雜環Eg越小染料的HOMO能階越低 17
1-7-4、聯噻吩(Fused thiophene)之碳數越多Eg越小 19
1-7-5、環金屬染料輔助配位基含有氧原子在TiO2膜上有低的吸附量 21
1-8 研究動機 24
第二章 、實驗部分 25
2-1、實驗藥品 25
2-2、中間產物之結構、分子量與簡稱 27
2-3、最終產物之結構、分子量與簡稱 30
2-4、實驗步驟 32
2-4-1、Et2dcbpy的合成,如圖2-1所示 32
2-4-3、L-23的合成流程,如圖2-3所示 36
2-4-4、L-28的合成流程,如圖2-4所示 39
2-4-5、L-29的合成流程,如圖2-5所示 41
2-4-6、L-30的合成流程,如圖2-6所示 45
2-4-7、L-31的合成流程,如圖2-7所示 48
2-4-8、釕錯合物HBC23的合成流程,如圖2-8所示 50
2-4-9、釕錯合物DUY28的合成流程,如圖2-9所示 52
2-4-10、釕錯合物DUY29的合成流程,如圖2-10所示 55
2-4-11、釕錯合物HBC30的合成流程,如圖2-11所示 57
2-4-12、釕錯合物HBC31的合成流程,如圖2-12所示 59
2-5、儀器分析與樣品製備 62
2-5-1、聚焦微波化學反應系統(CEM) 62
2-5-2、核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 63
2-5-3、紫外光/可見光吸收光譜儀(Ultraviolet Visible Spectrophoto-meter, UV/Vis Spectrophotometer) 64
2-5-4、電化學分析儀(Electrochemical Analyzer) 65
第三章 、結果與討論 67
3-1、光學性質 67
3-2、電化學性質 74
3-3、Density Fuctional Theory (DFT) 理論計算 80
3-3-1、理論計算出的染料的前置軌域分布 80
3-3-2、理論計算出的染料的Oscillator Strength 84
3-3-3、理論計算出的染料的β-LUSO前置軌域分布 94
3-4、HBC系列與DUY系列染料所組裝元件之光伏參數 96
3-4-1、HBC系列與DUY系列染料所組裝成元件J-V曲線圖與IPCE圖 97
3-4-2、HBC系列與DUY系列染料所組裝成元件開路電壓(Voc)的探討 99
3-4-3、HBC系列與DUY系列染料所組裝成元件短路電流(Jsc)的探討 102
第四章 結論 104
參考文獻 106
附錄 111
參考文獻 [1] A. Aslam, U. Mehmood, M. H. Arshad, A. Ishfaq, J. Zaheer, A. U. Khan, M. Sufyan, “Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications”, Solar Energy, 2020, 207, 874-892
[2] C. Fritts, “On the Fritts selenium cell and batteries”, Van Nostrands Engineering Magazine, 1885, 32, 388-395.
[3] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. H. Ebinger, M. Yoshita, A. W. Y. H. Baillie, "Solar cell efficiency tables (version 56)", Prog. Photovolt. Res. Appl., 2020, 28, 629-638.
[4] N. Sridhar and D. Freeman, “A Study of Dye Sensitized Solar Cells under Indoor and Low Level Outdoor Lighting: Comparison to Organic and Inorganic Thin Film Solar Cells and Methods to Address Maximum Power Point Tracking”, Texas Instruments, 2011, 1-5.
[5] N. Tomara, A. Agrawal, V. S. Dhaka, P. K. Surolia, “Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends”, Solar Energy, 2020, 207, 59-76.
[6] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, "Counter electrodes in dye-sensitized solar cells", Chem. Soc. Rev. 2017, 46, 5975-6023.
[7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell", Nature, 1976, 261, 402-403.
[8] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature, 1991, 353, 737-740.
[9] S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells" Energy Environ. Sci. 2015, 8, 3495-3514.
[10] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes", Chem. Commun., 2015, 51, 15894-15897.
[11] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells" ACS Nano, 2009, 3, 3103-3109.
[12] S. Mathew, A. Yelia, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavemelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers" Nat. Chem., 2014, 6, 242-247.
[13] W. Shockley, J. H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys., 1961, 32, 510-519.
[14] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, “Dye-sensitized solar cells”, Chem. Rev., 2010, 110, 6595-6663.
[15] N. Vlachopoulos, P. Liska, J. Augustynski, M. Graetzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am.Chem. Soc., 1988, 110, 1216-1220.
[16] M. K. Nazeeruddin, I. R. A. Kay, R. H. Baker, P. L. E. Mueller, N. Vlachopoulos and M. Grätzel, "Conversion of light to electricity by cis-X2bis (2,2-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes", J. Am. Chem. Soc., 1993, 115, 6382-6390.
[17] M. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell", J. Phys. Chem. B, 2003, 707, 8981-8987;
[18] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers", J. Am. Chem. Soc., 2005, 727, 16835-16847.
[19] H. T. Nguyen, H. M. Ta, T. Lund, “Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine” Solar Energy Materials & Solar Cells, 2007, 91, 1934-1942.
[20] J.-F. Yina, M. Velayudhama, D. Bhattacharyaa, H.-C. Linb, K.-L. Lu “Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells - a goal toward a bright future”, Coordination Chemistry Reviews, 2012, 256, 3008-3035.
[21] M. Hussain, A. Islam, I. Bedja, R. K. Gupta, L. Han, A. El-Shafei, “A comparative study of Ru(II) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be? ”, Phys. Chem. Chem. Phys., 2014, 16, 14874-14881.
[22] P.G. Bomben, B.D. Koivisto, C.P. Berlinguette, “Cyclometalated Ru Complexes of Type [RuII(N∧N)2(C∧N)]z Physicochemical Response to Substituents Installed on the Anionic Ligand”, Inorg. Chem., 2010, 49, 4960.
[23] P. G. Bomben, K. C.D. Robson, B. D. Koivisto, C. P. Berlinguette, “Cyclometalated ruthenium chromophores for the dye-sensitized solar cell”, Coordination Chemistry Reviews, 2012, 256, 1438-1450.
[24] Nguyen The Duy, “Thiocyanate-Free Cycloruthenated Sensitizer for Dye-Sensitized Solar Cells”, NCU, doctoral thesis, 2018
[25] T. D. Nguyen, Y. P. Lan, and C. G. Wu, “High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells”, Inorg. Chem., 2018, 57, 1527-1534.
[26] P. G. Bomben, K. C. D. Robson, P. A. Sedach, and C. P. Berlinguette, “On the Viability of Cyclometalated Ru(II) Complexes for Light-Harvesting Applications”, Inorg. Chem., 2009, 48, 9631-9643.
[27] A.V. Medved′ko, V.K. Ivanov, M.A. Kiskin, A.A. Sadovnikov, E.S. Apostolova, V.A. Grinberg, V.V. Emets, A.O. Chizhov, O.M. Nikitin, T.V. Magdesieva, S.A. Kozyukhin, “The design and synthesis of thiophene-based ruthenium(II) complexes as promising sensitizers for dye-sensitized solar cells”, Dyes and Pigments, 2017, 140, 169-178.
[28] M. Wykes,B. M.-Medina and J. Gierschner, “Computational engineering of low band gap copolymers”, Frontiers in Chemistry, 2013, 1, 1-11.
[29] M. Megala and B. J. M. Rajkumar, “DFT Study of Electronic Transfer Properties of Carboxyl and Nitro Substituted Benzene”, AIP Conference Proceedings, 2015, 1665, 110045.
[30] S. Xu, Z. Zhou, H. Fan, L. Ren, F. Liu, X. Zhu and T. P. Russellde, “An electron-rich 2-alkylthieno[3,4-b]thiophene building block with excellent electronic and morphological tunability for high-performance small-molecule solar cells”, J. Mater. Chem. A, 2016, 4, 17354.
[31] F. Dikcal, T. Ozturk and M. E. Cinar, “Fused thiophenes: an overview of the computational investigations”, Org.Commun., 2017, 10, 56-71.
[32] C. S. Ra, S.u Yim, and G. Park, “DFT Studies of Band Gaps of the Fused Thiophene Oligomers”, Bull. Korean Chem. Soc. 2008, 29, 891.
[33] B. L. Hayes “Recent Advances in Microwave Assisted Synthesis.” Aldricchem. Aceta., 2004, 17, 65-76.
[34] D. V. Pogozhev, M. J. Bezdek, P. A. Schauer, and C. P. Berlinguette, “Ruthenium(II) Complexes Bearing a Naphthalimide Fragment: A Modular Dye Platform for the Dye-Sensitized Solar Cell”, Inorg. Chem., 2013, 52, 3001-3006.
[35] Y. Zhou, Q. He, Y3 Yang, H. Zhong, C. He, G. Sang, W. Liu, C. Yang,F. Bai, and Y. Li, “Binaphthyl-Containing Green- and Red-Emitting Molecules for Solution-Processable Organic Light-Emitting Diodes”, Adv. Funct. Mater., 2008, 18, 3299-3306.
[36] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, phys. stat. sol., 1966, 15, 627-637.
[37] E. A Davis, N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Philos. Mag., 1970, 22, 903-922.
[38] L. G. Oktariza, B. Yuliarto, and Suyatman, “Performance of dye sensitized solar cells (DSSC) using Syngonium Podophyllum Schott as natural dye and counter electrode”, AIP Conference Proceedings, 2018, 020022, 1-5
[39] S. Malladi, S. Yarasi, and G. N. Sastry, “Exploring the potential of iron to replace ruthenium in photosensitizers:a computational study”, J. Mol. Model., 2018, 24, 341.
[40] B. Gunasekaran, R. Sureshbabu, A. K. Mohanakrishnan,G. Chakkaravarthi and V. Manivannan, “Diethyl 3,4-bis(acetoxymethyl)thieno-[2,3-b]thiophene-2,5-dicarboxylate”, Acta Cryst., 2009, 65, 2455.
[41] S. H. Mashraqui, M. Ashraf, H. Hariharasubrahmanian, R. M. Kellogg, A. Meetsma, “Donor–acceptor thieno[2,3-b ]thiophene systems: synthesis and structural study of 3-anisyl-4-pyridyl(pyridinium) thieno[2,3-b ]thiophenes”, Journal of Molecular Structure, 2004, 689, 107-113.
指導教授 吳春桂 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明