博碩士論文 107324022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.21.231.245
姓名 劉雅筑(Ya-Chu Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 設計連續培養系統應用於人類多能性幹細胞之增生於熱敏性高分子塗佈基材表面
(Design of Continuous Culture of Human Pluripotent Stem Cells on Thermoresponsive Polymeric Surface)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類多能性幹細胞 (human pluripotent stem cells (hPSCs))因具有自我增生能力以及分化能力,在臨床的醫學治療研究上具有極大的淺力。然而,臨床治療需要極大量的人類多性幹細胞,而一般的細胞培養採用的是費時又費力的批次培養。為解決上述問題,本實驗室利用熱敏感材料設計一個連續是細胞培養。將人類胚胎幹細胞培養於熱敏性基材表面,當我們需要收集細胞時,僅需將溫度降低於熱敏性高分子的低臨界溶解溫度 (lower critical solution temperature (LCST)) 以改變基材表面之親疏水性質以達到細胞部分脫附效果。而未脫附細胞將繼續培養於溫度高於低臨界溶解溫度的原熱敏性基材上。
因人類多能幹細胞必須貼附於特定的細胞外基質(Extracellular matrix (ECM))表面上,然而在此研究中,細胞外基質會隨著每一次收集細胞的次數而跟著減少;因此,在此實驗中,為確保細胞維持一定的生長效率,必須再加入一些ECM以確保,細胞能貼附在熱敏感材料,此方法不同於一般的ECM塗佈方法(pre-coating way),其必須既能同時培養細胞,又能同時加入ECM,我們稱此方法為非塗佈法(un-coating way).
此研究選用重組玻連蛋白(recombinant vitronectin(rVN))及重組層粘連蛋白(recombinant laminin-511(iMatrix-511))兩種細胞外基質。研究在非塗佈且不同比例混合之兩種ECM的環境下,對於細胞生長之影響,並找出最適當的混合比例濃度,再將此非塗佈方法及條件應用於連續式的培養。
本研究成功將人類多能性幹細胞,包括人類胚胎幹細胞(human embryonic stem cells (hESCs))以及人類誘導性多能性幹細胞(human induced pluripotent stem cells (hiPSCs)),培養於非塗佈(un-coating way)的環境及兩種ECM適合的混合比例下長期培養,仍保有原有的多功能性以及分化能力。此非塗佈的方法能避免在塗佈時所使用的溶劑,影響未能自熱敏感材料上脫附的細胞死亡。若此連續培養方式從2D培養方式到3D培養系統,將成為醫學應用領域的一大益處。
摘要(英) Stem cells are attractive source for tissue engineering applied on regenerative medicine, translational medicine, and drug discovery. Batch type culture is the typical process for stem cell culture, which is laborious and expansive. Moreover, the digestive enzymes or EDTA solutions to detach stem cells are causing cell damage and increasing production costs. For reducing the costs and laborious processes, I developed the continuous culture system culturing the human pluripotent stem cells (hPSCs) on thermoresponsive polymer surfaces. hPSCs could be detached from the thermoresponsive polymer surfaces by reducing the medium temperature below the lower critical solution temperature (LCST) of the thermoresponsive polymer. After reducing the temperature, the thermoresponsive surface becomes more hydrophilic, creating an unfavorable environment for cell attachment. Subsequently, hPSCs can be partially detached by gentle pipetting. The remained cells could be cultivated and would be confluent again by adding fresh medium. This continuous culture system could be used for 3D-cultivation. However, the barrier of applying this system is that hPSCs became harder to attach on the thermoresponsive surfaces coated with the extracellular matrix (ECM) after multicycles. This should be caused by degradation of ECM after long-term culture. Therefore, I investigated the precoated manner and uncoated manner with different ratios of ECMs; recombinant vitronectin (rVN) and recombinant laminin-511 (iMatrix-511). Comparing with traditional precoated process, the uncoated method where optimal ratio and concentration of ECMs were added into culture medium upon seeding cells, provided cost-effective and time-efficient method and maintained hPSCs pluripotency during long-term culture. This uncoated method that was applied to the continuous culture system would save time cost and accelerate the development of regenerative medicine.
關鍵字(中) ★ 熱敏感材料
★ 人類多能幹細胞
★ 連續培養
關鍵字(英) ★ thermoresponsive surface
★ human pluripotent stem cell
★ continuous cell cultivation
論文目次 Abstract II
致謝 III
Index of Content IV
Chapter 1. Introduction 1
1-1 Stem cells 1
1-1-1 Human pluripotent stem cells 2
1-1-1-1 Human embryonic stem cells 3
1-1-1-2 Induced human pluripotent stem cells 4
1-2 Two-dimensional (2D) culture of hPSCs 6
1-2-1 Human pluripotent stem cell (hPSC) culture on Matrigel 7
1-2-2 hPSC culture on ECM-immobilized surfaces 7
1-3 Physical cues effect of cell culture biomaterials on hPSC fate 11
1-3-1 The effect of biomaterial elasticity on hPSC fate 12
1-3-2 The effect of biomaterial hydrophilicity on hPSC fate 13
1-4 Continuous hPSCs cultivation on thermoresponsive surface 14
1-4-1 Characteristics of thermoresponsive Poly (N-isopropylacrylamide) 15
1-4-2 hPSCs culture on thermoresposive surface 17
1-4-3 Cell sheets prepared on thermoresponsive surface 20
1-5 Characterization of human Pluripotent Stem Cells (hPSCs) 22
1-5-1 Cell morphology of hPSCs 24
1-5-2 Pluripotent Gene Expression 24
1-5-3 Differentiation ability 26
1-6 Goal of this study 28
Chapter 2. Materials and Methods 30
2-1 Materials 30
2-1-1 Cell lines 30
2-1-2 Cell culture media, buffer and others 30
2-1-3 Cell culture substrates 31
2-1-4 Immunostaining analysis 32
2-2 Methods 34
2-2-1 Pre-coating and un-coating comparison on TCPS 34
2-2-2 Preparation of Thermoresposive Dishes 35
2-2-3 hPSCs Culture on the Thermoresponsive Dishes 37
2-2-3-1 hPS Cell Seeding 37
2-2-3-2 hPSCs Detached from Thermoresponsive Surface by Reducing Temperature 38
2-2-4 Characterization of hPSC 39
2-2-4-1 Cell Density Measurement 39
2-2-4-2 Differentiation Rate of hPSCs Colonies 41
2-2-4-3 Expansion Fold Change of hPSCs 41
2-2-4-4 Immunofluorescence Staining 42
2-2-4-5 Embryo Body (EB) Formation in Vitro Assay 45
2-2-4-6 hPSCs Differentiation into Cardiomyocytes 45
2-2-5 Characterization of Thermoresposive Surface 47
2-2-5-1 Contact Angle (CA) measurements 47
2-2-5-2 X-ray Photoelectron Spectroscopy (XPS) measurements 47
2-2-5-3 Fourier-Transform Infrared Spectroscopy (FTIR) measurements 48
Chapter 3. Results and Discussion 50
3-1 Characterization of the thermoresponsive surface 50
3-1-1 X-ray photoelectron spectroscopy (XPS) analysis for pre-coating method and un-coating method on TCPS 50
3-1-2 X-ray photoelectron spectroscopy (XPS) analysis for pre-coating method and un-coating method on thermoresponsive surface 54
3-1-3 Water Contact Angle (CA) Analysis 57
3-2 Pre-coating and Un-coating Methods of hPSCs Culture 60
3-2-1 Human PSC Culture on Several ECM-coated Surface 60
3-2-2 Human iPSC Culture by Un-coating Method with Different Ratio of Mixed ECMs 65
3-2-3 Universal hiPSCs and hESCs Culture Using Mixed ECMs 71
3-3 Characterization of hPSCs after long-term cultivation 76
3-3-1 Immunostaining Analysis on Pluripotency of hPSCs After Long-term Cultivation 76
3-3-2 Immunostaining Analysis on Differentiation Ability of hPSCs in Vitro After Long-term Cultivation 78
3-3-3 Cardiomyocyte Differentiation of hiPSC using Mixed ECMs 81
3-3-4 Flow Cytometry 84
3-4 Continuous Culture of hPSCs on the Thermoresponsive Surfaces 85
3-4-1 The Optimal Concentration of Mixed rVN and iMatrix-511 for Thermal Detachment of hPSCs 85
3-4-2 Continuous cultivation of hiPSCs on the thermoresponsive surfaces 90
Chapter 4. Conclusions 95
Reference 97
Supplementary Data 108
參考文獻 [1] Mitalipov S, Wolf D. Totipotency, Pluripotency and Nuclear Reprogramming. 2009:185-99.
[2] Higuchi A, Suresh Kumar S, Ling Q-D, Alarfaj AA, Munusamy MA, Murugan K, et al. Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science. 2017;65:83-126.
[3] Higuchi A, Ling Q-D, Chang Y, Hsu S-T, Umezawa A. Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate. Chemical Reviews. 2013;113:3297-328.
[4] Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery. 2015;14:681-92.
[5] Higuchi A, Ling Q-D, Ko Y-A, Chang Y, Umezawa A. Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews. 2011;111:3021-35.
[6] E. H. Lee JHPH. The potential of stem cells in orthopaedic surgery. JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME. 2006;88B:841-51.
[7] Davis RJ, Alam NM, Zhao C, Müller C, Saini JS, Blenkinsop TA, et al. The Developmental Stage of Adult Human Stem Cell-Derived Retinal Pigment Epithelium Cells Influences Transplant Efficacy for Vision Rescue. Stem Cell Reports. 2017;9:42-9.
[8] Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126:663-76.
[9] Higuchi A, Ling Q-D, Hsu S-T, Umezawa A. Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chemical Reviews. 2012;112:4507-40.
[10] Bahmad H, Hadadeh O, Chamaa F, Cheaito K, Darwish B, Makkawi A-K, et al. Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Frontiers in Molecular Neuroscience. 2017;10.
[11] Abbasalizadeh S, Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnology Advances. 2013;31:1600-23.
[12] Gil J-E, Woo D-H, Shim J-H, Kim S-E, You H-J, Park S-H, et al. Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Letters. 2009;583:561-7.
[13] Higuchi A, Ling Q-D, Kumar SS, Munusamy M, Alarfajj AA, Umezawa A, et al. Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science. 2014;39:1348-74.
[14] Serra M, Brito C, Correia C, Alves PM. Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology. 2012;30:350-9.
[15] Peng IC, Yeh C-C, Lu Y-T, Muduli S, Ling Q-D, Alarfaj AA, et al. Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces. Biomaterials. 2016;76:76-86.
[16] Becerra NY, López BL, Restrepo LM. Thermosensitive behavior in cell culture media and cytocompatibility of a novel copolymer: poly(N-isopropylacrylamide-co-butylacrylate). Journal of Materials Science: Materials in Medicine. 2013;24:1043-52.
[17] Chen VC, Couture LA, Gold J. Application of the Suspension Culture System for Scale-Up Manufacture of hPSCs and hPSC-Derived Cardiomyocytes. 2017;4:145-61.
[18] Kim H, Kim Y, Park J, Hwang N, Lee Y, Hwang Y. Recent Advances in Engineered Stem Cell-Derived Cell Sheets for Tissue Regeneration. Polymers. 2019;11:209.
[19] Gokhale PJ, Andrews PW. Characterization of human pluripotent stem cells. NeuroReport. 2013;24:1031-4.
[20] Orozco-Fuentes S, Neganova I, Wadkin LE, Baggaley AW, Barrio RA, Lako M, et al. Quantification of the morphological characteristics of hESC colonies. Scientific Reports. 2019;9.
[21] Marioni JC, Miyamoto T, Furusawa C, Kaneko K. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation. PLOS Computational Biology. 2015;11:e1004476.
[22] Sung T-C, Yang J-S, Yeh C-C, Liu Y-C, Jiang Y-P, Lu M-W, et al. The design of a thermoresponsive surface for the continuous culture of human pluripotent stem cells. Biomaterials. 2019;221:119411.
[23] Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok W-M, Wu JC, et al. High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry. Journal of Visualized Experiments. 2014.
[24] Jia J, Coyle RC, Richards DJ, Berry CL, Barrs RW, Biggs J, et al. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomaterialia. 2016;45:110-20.
[25] Hayashi Y, Furue MK. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. Stem Cells International. 2016;2016:1-11.
[26] Dai Z, Shu Y, Wan C, Wu C. Effects of Culture Substrate Made of Poly(N-isopropylacrylamide-co-acrylic acid) Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells. Molecules. 2016;21:1192.
[27] Sudo Y, Sakai H, Nabae Y, Hayakawa T, Kakimoto M-a. Preparation of hyperbranched polystyrene-g-poly(N-isopropylacrylamide) copolymers and its application to novel thermo-responsive cell culture dishes. Polymer. 2015;70:307-14.
[28] Nagase K, Hatakeyama Y, Shimizu T, Matsuura K, Yamato M, Takeda N, et al. Thermoresponsive Cationic Copolymer Brushes for Mesenchymal Stem Cell Separation. Biomacromolecules. 2015;16:532-40.
[29] Marioni JC, Miyamoto T, Furusawa C, Kaneko K. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation. PLOS Computational Biology. 2015;11:e1004476.
[30] Margaryan H, Dorosh A, Capkova J, Manaskova-Postlerova P, Philimonenko A, Hozak P, et al. Characterization and possible function of glyceraldehyde-3-phosphate dehydrogenase-spermatogenic protein GAPDHS in mammalian sperm. Reproductive Biology and Endocrinology. 2015;13:15.
[31] Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery. 2015;14:681-92.
[32] Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V. Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering. Stem Cells International. 2015;2015:1-12.
[33] Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reproductive Biology and Endocrinology. 2015;13:9.
[34] Babos K, Ichida Justin K. Small Molecules Take a Big Step by Converting Fibroblasts into Neurons. Cell Stem Cell. 2015;17:127-9.
[35] Tang Z, Akiyama Y, Okano T. Recent development of temperature-responsive cell culture surface using poly(N-isopropylacrylamide). Journal of Polymer Science Part B: Polymer Physics. 2014;52:917-26.
[36] Priya James H, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharmaceutica Sinica B. 2014;4:120-7.
[37] Higuchi A, Ling Q-D, Kumar SS, Munusamy M, Alarfajj AA, Umezawa A, et al. Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science. 2014;39:1348-74.
[38] Gandavarapu NR, Alge DL, Anseth KS. Osteogenic differentiation of human mesenchymal stem cells on α5 integrin binding peptide hydrogels is dependent on substrate elasticity. Biomater Sci. 2014;2:352-61.
[39] Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok W-M, Wu JC, et al. High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry. Journal of Visualized Experiments. 2014.
[40] Zhu Z, Huangfu D. Human pluripotent stem cells: an emerging model in developmental biology. Development. 2013;140:705-17.
[41] Wilson JL, McDevitt TC. Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnology and Bioengineering. 2013;110:667-82.
[42] Stelling MP, Lages YMV, Tovar AMF, Mourão PAS, Rehen SK. Matrix-bound heparan sulfate is essential for the growth and pluripotency of human embryonic stem cells. Glycobiology. 2013;23:337-45.
[43] Nagase K, Hatakeyama Y, Shimizu T, Matsuura K, Yamato M, Takeda N, et al. Hydrophobized Thermoresponsive Copolymer Brushes for Cell Separation by Multistep Temperature Change. Biomacromolecules. 2013;14:3423-33.
[44] Ko DY, Shinde UP, Yeon B, Jeong B. Recent progress of in situ formed gels for biomedical applications. Progress in Polymer Science. 2013;38:672-701.
[45] Kim J, Kim Y-R, Kim Y, Lim KT, Seonwoo H, Park S, et al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B. 2013;1:933.
[46] Higuchi A, Ling Q-D, Chang Y, Hsu S-T, Umezawa A. Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate. Chemical Reviews. 2013;113:3297-328.
[47] Gokhale PJ, Andrews PW. Characterization of human pluripotent stem cells. NeuroReport. 2013;24:1031-4.
[48] Becerra NY, López BL, Restrepo LM. Thermosensitive behavior in cell culture media and cytocompatibility of a novel copolymer: poly(N-isopropylacrylamide-co-butylacrylate). Journal of Materials Science: Materials in Medicine. 2013;24:1043-52.
[49] Abbasalizadeh S, Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnology Advances. 2013;31:1600-23.
[50] Tang Z, Akiyama Y, Okano T. Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering. Polymers. 2012;4:1478-98.
[51] Tang LAL, Lee WC, Shi H, Wong EYL, Sadovoy A, Gorelik S, et al. Highly Wrinkled Cross-Linked Graphene Oxide Membranes for Biological and Charge-Storage Applications. Small. 2012;8:423-31.
[52] Tamura A, Kobayashi J, Yamato M, Okano T. Thermally responsive microcarriers with optimal poly(N-isopropylacrylamide) grafted density for facilitating cell adhesion/detachment in suspension culture. Acta Biomaterialia. 2012;8:3904-13.
[53] Serra M, Brito C, Correia C, Alves PM. Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology. 2012;30:350-9.
[54] Serra M, Brito C, Correia C, Alves PM. Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology. 2012;30:350-9.
[55] Serra M, Brito C, Correia C, Alves PM. Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology. 2012;30:350-9.
[56] Ross AM, Nandivada H, Ryan AL, Lahann J. Synthetic substrates for long-term stem cell culture. Polymer. 2012;53:2533-9.
[57] Radhakrishnan K, Raichur AM. Biologically triggered exploding protein based microcapsules for drug delivery. Chemical Communications. 2012;48:2307.
[58] Pruszak J, Nishishita N, Shikamura M, Takenaka C, Takada N, Fusak N, et al. Generation of Virus-Free Induced Pluripotent Stem Cell Clones on a Synthetic Matrix via a Single Cell Subcloning in the Naïve State. PLoS ONE. 2012;7:e38389.
[59] Nagase K, Mukae N, Kikuchi A, Okano T. Thermally Modulated Retention of Lymphoctytes on Polymer-Brush-Grafted Glass Beads. Macromolecular Bioscience. 2012;12:333-40.
[60] Nagase K, Kimura A, Shimizu T, Matsuura K, Yamato M, Takeda N, et al. Dynamically cell separating thermo-functional biointerfaces with densely packed polymer brushes. Journal of Materials Chemistry. 2012;22:19514.
[61] Meng G, Liu S, Rancourt DE. Synergistic Effect of Medium, Matrix, and Exogenous Factors on the Adhesion and Growth of Human Pluripotent Stem Cells Under Defined, Xeno-Free Conditions. Stem Cells and Development. 2012;21:2036-48.
[62] Lindvall O. Dopaminergic neurons for Parkinson′s therapy. Nature Biotechnology. 2012;30:56-8.
[63] Li T-S, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, et al. Direct Comparison of Different Stem Cell Types and Subpopulations Reveals Superior Paracrine Potency and Myocardial Repair Efficacy With Cardiosphere-Derived Cells. Journal of the American College of Cardiology. 2012;59:942-53.
[64] Lako M, Sun Y, Villa-Diaz LG, Lam RHW, Chen W, Krebsbach PH, et al. Mechanics Regulates Fate Decisions of Human Embryonic Stem Cells. PLoS ONE. 2012;7:e37178.
[65] Ilic D, Stephenson E, Wood V, Jacquet L, Stevenson D, Petrova A, et al. Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy. 2012;14:122-8.
[66] Higuchi A, Ling Q-D, Hsu S-T, Umezawa A. Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chemical Reviews. 2012;112:4507-40.
[67] Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U. Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols. 2011;6:689-700.
[68] Saha K, Mei Y, Reisterer CM, Pyzocha NK, Yang J, Muffat J, et al. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proceedings of the National Academy of Sciences. 2011;108:18714-9.
[69] Michal Amit 1 IL, Yael Miropolsky, Kohava Shariki, Meital Peri, Joseph Itskovitz-Eldor. Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc. 2011;6:572-9.
[70] Larijani MR, Seifinejad A, Pournasr B, Hajihoseini V, Hassani S-N, Totonchi M, et al. Long-Term Maintenance of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells in Suspension. Stem Cells and Development. 2011;20:1911-23.
[71] Kim B-S, Park I-K, Hoshiba T, Jiang H-L, Choi Y-J, Akaike T, et al. Design of artificial extracellular matrices for tissue engineering. Progress in Polymer Science. 2011;36:238-68.
[72] Irwin EF, Gupta R, Dashti DC, Healy KE. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials. 2011;32:6912-9.
[73] Horie M, Ito A. A Genetically Engineered STO Feeder System Expressing E-Cadherin and Leukemia Inhibitory Factor for Mouse Pluripotent Stem Cell Culture. Journal of Bioprocessing & Biotechniques. 2011;01.
[74] Higuchi A, Ling Q-D, Ko Y-A, Chang Y, Umezawa A. Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews. 2011;111:3021-35.
[75] Fu X, Toh WS, Liu H, Lu K, Li M, Cao T. Establishment of Clinically Compliant Human Embryonic Stem Cells in an Autologous Feeder-Free System. Tissue Engineering Part C: Methods. 2011;17:927-37.
[76] Chen AK-L, Chen X, Choo ABH, Reuveny S, Oh SKW. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research. 2011;7:97-111.
[77] Burdick JA, Watt FM. High-throughput stem-cell niches. Nature Methods. 2011;8:915-6.
[78] Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O′Shea KS, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology. 2010;28:581-3.
[79] Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nature Biotechnology. 2010;28:361-4.
[80] Serra M, Brito C, Sousa MFQ, Jensen J, Tostões R, Clemente J, et al. Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. Journal of Biotechnology. 2010;148:208-15.
[81] Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H. Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates. Advanced Functional Materials. 2010;20:3235-43.
[82] Rodin S, Domogatskaya A, Ström S, Hansson EM, Chien KR, Inzunza J, et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology. 2010;28:611-5.
[83] Olmer R, Haase A, Merkert S, Cui W, Paleček J, Ran C, et al. Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research. 2010;5:51-64.
[84] Meng G, Liu S, Li X, Krawetz R, Rancourt DE. Extracellular Matrix Isolated From Foreskin Fibroblasts Supports Long-Term Xeno-Free Human Embryonic Stem Cell Culture. Stem Cells and Development. 2010;19:547-56.
[85] Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology. 2010;28:606-10.
[86] Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials. 2010;9:768-78.
[87] Mahlstedt MM, Anderson D, Sharp JS, McGilvray R, Barbadillo Muñoz MD, Buttery LD, et al. Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnology and Bioengineering. 2010;105:130-40.
[88] Kolhar P, Kotamraju VR, Hikita ST, Clegg DO, Ruoslahti E. Synthetic surfaces for human embryonic stem cell culture. Journal of Biotechnology. 2010;146:143-6.
[89] Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods. 2010;7:989-94.
[90] Kang L, Kou Z, Zhang Y, Gao S. Induced pluripotent stem cells (iPSCs)—a new era of reprogramming. Journal of Genetics and Genomics. 2010;37:415-21.
[91] Kalbacova M, Broz A, Kong J, Kalbac M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon. 2010;48:4323-9.
[92] Hironobu Takahashi MN, Masayuki Yamato, and Teruo Okano. Controlled Chain Length and Graft Density of Thermoresponsive Polymer Brushes for Optimizing Cell Sheet. Biomacromolecules. 2010;11:1991-9.
[93] Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials. 2010;31:9135-44.
[94] Azarin SM, Palecek SP. Development of scalable culture systems for human embryonic stem cells. Biochemical Engineering Journal. 2010;48:378-84.
[95] Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, et al. Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports. 2010;6:248-59.
[96] Akasaka T, Yokoyama A, Matsuoka M, Hashimoto T, Watari F. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations. Materials Science and Engineering: C. 2010;30:391-9.
[97] Abraham S, Sheridan SD, Miller B, Rao RR. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates. Biotechnology Progress. 2010:NA-NA.
[98] Oh SKW, Chen AK, Mok Y, Chen X, Lim UM, Chin A, et al. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Research. 2009;2:219-30.
[99] Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP. Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnology Progress. 2009;25:20-31.
[100] Mitalipov S, Wolf D. Totipotency, Pluripotency and Nuclear Reprogramming. 2009:185-99.
[101] Lye T. Lock BSaEST, Ph.D. Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A. 2009;15:2051-63.
[102] Gil J-E, Woo D-H, Shim J-H, Kim S-E, You H-J, Park S-H, et al. Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Letters. 2009;583:561-7.
[103] Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS, Wang F, et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Materials. 2009;9:82-8.
[104] Céline Liu Bauwens 1 RP, Sylvia Niebruegge, Kimberly A Woodhouse, Eugenia Kumacheva, Mansoor Husain, Peter W Zandstra. Control of Human Embryonic Stem Cell Colony and Aggregate Size Heterogeneity Influences Differentiation Trajectories. Stem Cell. 2009;26:2300-10.
[105] Abraham S, Eroshenko N, Rao RR. Role of bioinspired polymers in determination of pluripotent stem cell fate. Regenerative Medicine. 2009;4:561-78.
[106] Veraitch FS, Scott R, Wong J-W, Lye GJ, Mason C. The impact of manual processing on the expansion and directed differentiation of embryonic stem cells. Biotechnology and Bioengineering. 2008;99:1216-29.
[107] Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Wan W, Ratajczak J, Wojakowski W, et al. Hunt for pluripotent stem cell – Regenerative medicine search for almighty cell. Journal of Autoimmunity. 2008;30:151-62.
[108] Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM. Attachment and growth of human embryonic stem cells on microcarriers. Journal of Biotechnology. 2008;138:24-32.
[109] Majo F, Rochat A, Nicolas M, Jaoudé GA, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008;456:250-4.
[110] Daniel David Stöbener aAH, a Johanna Scholza and Marie Weinhart. Endothelial, smooth muscle and fibroblast cell sheet fabrication from self-assembled thermoresponsive poly(glycidyl ether) brushes. Soft Matter. 2008;14:8333-43.
[111] Strulovici Y, Leopold PL, O′Connor TP, Pergolizzi RG, Crystal RG. Human Embryonic Stem Cells and Gene Therapy. Molecular Therapy. 2007;15:850-66.
[112] Moran MT, Carroll WM, Selezneva I, Gorelov A, Rochev Y. Cell growth and detachment from protein-coated PNIPAAm-based copolymers. Journal of Biomedical Materials Research Part A. 2007;81A:870-6.
[113] Haynes CWPJM. Embryonic stem cells as a source of models for drug discovery. Nature Reviews Drug Discovery. 2007;6:605-16.
[114] Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nature Reviews Immunology. 2006;6:93-106.
[115] Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126:663-76.
[116] Oh SKW, Choo ABH. Human Embryonic Stem Cell Technology: Large Scale Cell Amplification and Differentiation. Cytotechnology. 2006;50:181-90.
[117] E. H. Lee JHPH. The potential of stem cells in orthopaedic surgery. JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME. 2006;88B:841-51.
[118] Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O′Sullivan C, et al. Basic Fibroblast Growth Factor Supports Undifferentiated Human Embryonic Stem Cell Growth Without Conditioned Medium. Stem Cells. 2005;23:315-23.
[119] Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine. 2005;11:228-32.
[120] Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences. 2005;102:4783-8.
[121] Greenlee AR, Kronenwetter-Koepel TA, Kaiser SJ, Ellis TM, Liu K. Combined effects of MatrigelTM and growth factors on maintaining undifferentiated murine embryonic stem cells for embryotoxicity testing. Toxicology in Vitro. 2004;18:543-53.
[122] Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder Layer- and Serum-Free Culture of Human Embryonic Stem Cells1. Biology of Reproduction. 2004;70:837-45.
[123] Yanlei Yu MNTI. Directed bending of a polymer film by light. Nature. 2003;425.
[124] Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Molecular Biology of the Cell. 2002;13:4279-95.
[125] C Xu MSI, J Denham, K Golds, P Kundu, J D Gold, M K Carpenter. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19:971-4.
[126] Byeongmoon Jeong YHB, Doo Sung Lee & Sung Wan Kim. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388:860-2.
[127] Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991;251:1451-5.
[128] Kaufman MJEMH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154-6.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明