參考文獻 |
Barghetti, A., Sjögren, L., Floris, M., Paredes, E. B., Wenkel, S., & Brodersen, P. (2017). Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes & development, 31(22), 2282-2295.
Caplan, A. J., Cyr, D. M., & Douglas, M. G. (1992). YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell, 71(7), 1143-1155.
Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S., & McCourt, P. (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science, 273(5279), 1239-1241.
Cyr, D. M., & Ramos, C. H. (2015). Specification of Hsp70 function by type I and type II Hsp40. In The Networking of Chaperones by Co-chaperones (pp. 91-102). Springer, Cham.
Dutilleul, C., Ribeiro, I., Blanc, N., Nezames, C. D., Deng, X. W., Zglobicki, P., ... & Giglioli‐Guivarc′h, N. (2016). ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. Plant, cell & environment, 39(1), 185-198.
Galichet, A., & Gruissem, W. (2003). Protein farnesylation in plants—conserved mechanisms but different targets. Current opinion in plant biology, 6(6), 530-535.
Hashiguchi, A., & Komatsu, S. (2017). Posttranslational Modifications and Plant–Environment Interaction. In Methods in enzymology (Vol. 586, pp. 97-113). Academic Press.
Hu, C., Lin, S. Y., Chi, W. T., & Charng, Y. Y. (2012). Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. Plant physiology, 158(2), 747-758.
Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N. & Guy, C. L. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant physiology, 136(4), 4159-4168.
Kotak, S., Vierling, E., Bäumlein, H., & von Koskull-Döring, P. (2007). A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. The Plant Cell, 19(1), 182-195.
Kumar, S. V., & Wigge, P. A. (2010). H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 140(1), 136-147.
Lee, S., & Tsai, F. T. (2005). Molecular chaperones in protein quality control. J Biochem Mol Biol, 38(3), 259-265.
Leng, L., Liang, Q., Jiang, J., Zhang, C., Hao, Y., Wang, X., & Su, W. (2017). A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana. Journal of plant research, 130(2), 349-363.
Lin, B. L., Wang, J. S., Liu, H. C., Chen, R. W., Meyer, Y., Barakat, A., & Delseny, M. (2001). Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell stress & chaperones, 6(3), 201.
Liu, H. C., & Charng, Y. Y. (2012). Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant signaling & behavior, 7(5), 547-550.
Liu, H. T., Gao, F., Li, G. L., Han, J. L., Liu, D. L., Sun, D. Y., & Zhou, R. G. (2008). The calmodulin‐binding protein kinase 3 is part of heat‐shock signal transduction in Arabidopsis thaliana. The Plant Journal, 55(5), 760-773.
Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and molecular life sciences, 62(6), 670.
Merret, R., Carpentier, M. C., Favory, J. J., Picart, C., Descombin, J., Bousquet-Antonelli, C. & Charng, Y. Y. (2017). Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock. Plant physiology, 174(2), 1216-1225.
Mondal, S., Singh, R. P., Crossa, J., Huerta-Espino, J., Sharma, I., Chatrath, R. & Kalappanavar, I. K. (2013). Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field crops research, 151, 19-26.
Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in plant science, 22(1), 53-65.
Pagel, O., Loroch, S., Sickmann, A., & Zahedi, R. P. (2015). Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert review of proteomics, 12(3), 235-253.
Pei, Z. M., Ghassemian, M., Kwak, C. M., McCourt, P., & Schroeder, J. I. (1998). Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science, 282(5387), 287-290.
Reindl, A., Schoffl, F., Schell, J., Koncz, C., & Bako, L. (1997). Phosphorylation by a cyclin-dependent kinase modulates DNA binding of the Arabidopsis heat-shock transcription factor HSF1 in vitro. Plant physiology, 115(1), 93-100.
Running, M. P. (2014). The role of lipid post–translational modification in plant developmental processes. Frontiers in plant science, 5, 50.
Sable, A., & Agarwal, S. K. (2018). Plant heat shock protein families: Essential machinery for development and defense. Journal of Biological Sciences and Medicine, 4(1), 51-64.
Sangwan, V., Örvar, B. L., Beyerly, J., Hirt, H., & Dhindsa, R. S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. The Plant Journal, 31(5), 629-638.
Scharf, K. D., Berberich, T., Ebersberger, I., & Nover, L. (2012). The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 104-119.
Su, P. H., & Li, H. M. (2010). Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. The Plant Cell, 22(5), 1516-1531.
Sung, D. Y., Vierling, E., & Guy, C. L. (2001). Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant physiology, 126(2), 789-800.
Venne, A. S., Kollipara, L., & Zahedi, R. P. (2014). The next level of complexity: crosstalk of posttranslational modifications. Proteomics, 14(4-5), 513-524.
Vierling, E. (1991). The roles of heat shock proteins in plants. Annual review of plant biology, 42(1), 579-620.
Wahid, A., & Close, T. J. (2007). Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum, 51(1), 104-109.
Wang, M., & Casey, P. J. (2016). Protein prenylation: unique fats make their mark on biology. Nature reviews Molecular cell biology, 17(2), 110.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.
Wu, J. R., Wang, L. C., Lin, Y. R., Weng, C. P., Yeh, C. H., & Wu, S. J. (2017). The Arabidopsis heat‐intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress. New Phytologist, 213(3), 1181-1193.
Wu, J. R., Wang, T. Y., Weng, C. P., Duong, N. K. T., & Wu, S. J. (2019). AtJ3, a specific HSP40 protein, mediates protein farnesylation-dependent response to heat stress in Arabidopsis. Planta, 250(5), 1449-1460.
Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K. & Osakabe, Y. (2011). Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 286(5-6), 321-332.
Zhang, X. P., & Glaser, E. (2002). Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends in plant science, 7(1), 14-21.
Zhu, J. K., Shi, J., Bressan, R. A., & Hasegawa, P. M. (1993). Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ. The Plant Cell, 5(3), 341-349. |