博碩士論文 107421009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.142.133.41
姓名 沈依(Yi Shen)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 利用LSTM建立聲音滿意度辨識模型
(Construct a vocal satisfaction identification model with LSTM)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 結合人格特質與海報主色以類神經網路推薦電影之研究★ 資料視覺化圖表與議題之關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-15以後開放)
摘要(中) 隨著行動電話的蓬勃發展,電話已儼然成為行銷的強大工具,並且以電戶行銷的方式可客製化的制定適合的策略以達到顧客滿意,藉此特性每日皆會有大量地聲音資料產生。然而,對於電話行銷而言,若要探討顧客滿意度,無法使用傳統紙本問卷之形式蒐集,必須透過語音對話的方式進行探討,而目前已有學者透過語音資料以情感或是情緒探討滿意度,但無論是情緒或情感皆是多元且複雜的,其正負向之情感或情緒皆不能代表顧客的滿意程度,因為正向可能包含了開心、快樂、滿意,負向可能包含沮喪、難過、不滿意,而滿意以及不滿意皆只是其中可能的結果,且目前尚未有學者利用真實的客服中心語音資料建立滿意度辨識模型。故本研究將建立一套LSTM聲音滿意度辨識模型,結合真實客服滿意度調查語音資料與顧客購買之歷史紀錄,以探究顧客真實的滿意度感受。而本研究首先以實驗設計蒐集實驗室資料以建立實驗室滿意度辨識模型,並以此模型當作業界模型之雛形,再以相同的方式建立業界滿意度辨識模型。然而,最後實驗結果得出實驗室與業界滿意度辨識模型精確率皆高於70%,依此結果,此模型可有效地了解顧客之滿意程度,並可掌控電話行銷進行之時間,以降低成本及提升客服人員服務品質管理以及顧客關係管理的維護,使企業增加效能與利益。
摘要(英) As the rapid development of technology, smart phone becomes a powerful tool for marketing and telephone marketing can customize the suitable strategies to make customer feel satisfied, thus it would generate a large amount of vocal data every day. However, if we want to know the satisfaction of telephone marketing, we must use the vocal data instead of paper questionnaire. There are some scholars using vocal data to discuss satisfaction by emotion or sentiment and divide it in to positive and negative, but whether the emotion or sentiment are diverse and complex, the positive may include happy, excited and satisfied and the negative may include frustrated, anger and dissatisfied, according to the above, satisfied and dissatisfied are just the possible results, so we can’t use it to represent the satisfaction of the customer, and no scholars have used the real call center’s vocal data to construct a satisfaction identification model. Therefore, this study will construct a vocal satisfaction identification model with LSTM, it combines with real vocal data of satisfaction survey and the history records of customer purchase, to explore the real customer satisfaction. In this study, the identification model derived from the vocal collected in the lab serves as a prototype to develop the satisfaction identification model for vocal collected from call centers. Based on the result, the accuracy of these two models are higher than 70%. To sum up, this model can effectively identify customer satisfaction and control the duration of a call, it can reduce costs, improve the service quality, maintain customer relationship, enhance company’s efficiency and benefits.
關鍵字(中) ★ 電話行銷
★ 顧客滿意度
★ LSTM
關鍵字(英) ★ Telephone marketing
★ Customer Satisfaction
★ LSTM
論文目次 目錄
中文摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 4
1-3 研究架構 5
第二章 文獻探討 6
2-1 顧客滿意度 6
2-2 顧客滿意度與再購意願 8
2-3 語音情緒辨識 9
第三章 研究方法 12
3-1 研究流程 12
3-2 聲音處理與特徵萃取 13
3-3 遞迴神經網路 17
第四章 研究實驗 20
4-1 資料來源 20
4-2 資料蒐集流程 21
4-2-1 實驗室資料蒐集流程 21
4-2-2 業界資料蒐集流程 25
4-3 實驗結果與分析 29
4-3-1 實驗室資料信效度分析 29
4-3-2 實驗室與業界資料結果比較與分析 31
第五章 結論 37
5-1 研究結論 37
5-2研究限制與未來研究建議 38
參考文獻 39
附錄A 實務建議 44
顧客一年未購買及不滿意原因分析 44
對業界之建議 45

圖目錄
圖1-1 : 研究架構圖 5
圖3-1:研究流程圖 12
圖3-2:梅爾倒頻譜係數萃取流程 13
圖3-3:RNN架構 17
圖3-4:LSTM架構 18
圖4-1:前測問卷 22
圖4-2:朗讀字卡 22
圖4-3:後測問卷 22
圖4-4:實驗室資料蒐集流程 24
圖4-5:滿意顧客詢問流程 26
圖4-6:不滿意顧客詢問流程 26
圖4-7:業界資料蒐集流程 28
圖4-8:實驗室資料在不同學習率與神經元數量下之精確率 33
圖4-9:業界資料在不同學習率與神經元數量下之精確率 34
圖4-10:13與26和39特徵維度之精確率差異 35
圖A-1:第一等第之顧客電話行銷時間軸 47
圖A-2:第二等第之顧客電話行銷時間軸 47
圖A-3:第三等第之顧客電話行銷時間軸 48

表目錄
表2-1:顧客滿意度之定義 6
表2-2:語音情緒辨識文獻比較 10
表4-1:實驗室與業界資料來源 20
表4-2:顧客分類推論 26
表4-3:滿意問卷混淆矩陣表 31
表4-4:梅爾倒頻譜架構特徵萃取之參數 31
表4-5:實驗室混淆矩陣表 33
表4-6:實驗室模型LSTM參數表 33
表4-7:業界混淆矩陣表 34
表4-8:業界模型LSTM參數表 34
表4-9:實驗室模型測試業界資料之混淆矩陣表 35
表A-1:顧客等第狀態代號表 49
參考文獻 參考文獻
[1] Ando, A., Masumura, R., Kamiyama, H., Kobashikawa, S., Aono, Y., & Toda, T. (2020). Customer Satisfaction Estimation in Contact Center Calls Based on a Hierarchical Multi-Task Model. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 715-728
[2] Atmaja, B. T., & Akagi, M. (2019). Speech Emotion Recognition Based on Speech Segment Using LSTM with Attention Model. In 2019 IEEE International Conference on Signals and Systems (ICSigSys) (pp. 40-44). IEEE.
[3] Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
[4] Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 351-370.
[5] Boyd, D. E. J. J. o. C. M. (1996). Defensive marketing’s use of post‐purchase telecommunications to create competitive advantages: a strategic analysis.
[6] Cardozo, R. N. (1965). An experimental study of customer effort, expectation, and satisfaction. Journal of marketing research, 2(3), 244-249.
[7] Cattell, R. B. (1940). Sentiment or attitude? The core of a terminology problem in personality research. Character & Personality; A Quarterly for Psychodiagnostic & Allied Studies.
[8] Chavhan, Y., Dhore, M. L., & Yesaware, P. (2010). Speech emotion recognition using support vector machine. International Journal of Computer Applications, 1(20), 6-9.
[9] Chen, L., Wu, M., Zhou, M., Liu, Z., She, J., & Hirota, K. (2017). Dynamic emotion understanding in human-robot interaction based on two-layer fuzzy SVR-TS model. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
[10] Chen, L., Su, W., Feng, Y., Wu, M., She, J., & Hirota, K. (2020). Two-layer fuzzy multiple random forest for speech emotion recognition in human-robot interaction. Information Sciences, 509, 150-163.
[11] Crosby, L. A., Evans, K. R., & Cowles, D. (1990). Relationship quality in services selling: an interpersonal influence perspective. Journal of marketing, 54(3), 68-81.
[12] Day, R. L. (1984). Modeling choices among alternative responses to dissatisfaction. Advances in consumer research, 11(1).
[13] Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE transactions on acoustics, speech, and signal processing, 28(4), 357-366.
[14] Fischer, A., & Igel, C. J. N. c. (2011). Bounding the bias of contrastive divergence learning. 23(3), 664-673.
[15] Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.
[16] Fornell, C. J. J. o. m. (1992). A national customer satisfaction barometer: The Swedish experience. 56(1), 6-21.
[17] Francken, D. A. J. J. o. E. P. (1983). Postpurchase consumer evaluations, complaint actions and repurchase behavior. 4(3), 273-290.
[18] Geetika, D. T., et al. (2012). A Study of Indian Consumers’ Perception on Telemarketing. 2(2), 97-102.
[19] Giese, J. L., & Cote, J. A. (2000). Defining consumer satisfaction. Academy of marketing science review, 1(1), 1-22.
[20] Hair, J. F., et al. (1998). Multivariate data analysis (Vol. 5): Prentice hall Upper Saddle River, NJ.
[21] Harimi, A., & Esmaileyan, Z. (2014). A database for automatic Persian speech emotion recognition: collection, processing and evaluation. International Journal of Engineering, 27(1), 79-90.
[22] Hernon, P., et al. (1999). Service quality and customer satisfaction: An assessment and future directions. 25(1), 9-17.
[23] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[24] Howard, J. A. (1977). Consumer behavior: Application of theory (Vol. 325). New York: McGraw-Hill.
[25] Izard, C. E. (2013). Human emotions. Springer Science & Business Media.
[26] Ju, Y., Back, K. J., Choi, Y., & Lee, J. S. (2019). Exploring Airbnb service quality attributes and their asymmetric effects on customer satisfaction. International Journal of Hospitality Management, 77, 342-352.
[27] Kamaruddin, N., Rahman, A. W. A., & Shah, A. N. R. (2016). Measuring customer satisfaction through speech using valence-arousal approach. In 2016 6th International Conference on Information and Communication Technology for The Muslim World (ICT4M) (pp. 298-303). IEEE.
[28] Kang, D., & Park, Y. (2014). based measurement of customer satisfaction in mobile service: Sentiment analysis and VIKOR approach. Expert Systems with Applications, 41(4), 1041-1050.
[29] Kincade, D. H., Giddings, V. L., & Chen‐Yu, H. J. (1998). Impact of product‐specific variables on consumers′ post‐consumption behaviour for apparel products: USA. Journal of Consumer Studies & Home Economics, 22(2), 81-90.
[30] Kodukula, S. J. P. D. d., PhD thesis. (2009). Significance of excitation source information for speech analysis.
[31] Kotler, P. (1992). Marketing Management. New Delhi: Prentice Hall.
[32] Kotler, P. (1994). Marketing management, analysis, planning, implementation, and control, Philip Kotler. London: Prentice-Hall International.
[33] Kotler, P. (2009). Marketing management: A south Asian perspective: Pearson Education India.
[34] Lam, S. Y., Shankar, V., Erramilli, M. K., & Murthy, B. (2004). Customer value, satisfaction, loyalty, and switching costs: an illustration from a business-to-business service context. Journal of the academy of marketing science, 32(3), 293-311.
[35] Müller, W. J. E. M. J. (1991). Gaining competitive advantage through customer satisfaction. 9(2), 201-211.
[36] Murray, H. A., & Morgan, C. D. (1945). A clinical study of sentiments (I & II). Genetic Psychology Monographs.
[37] Oliva, T. A., Oliver, R. L., & MacMillan, I. C. (1992). A catastrophe model for developing service satisfaction strategies. Journal of marketing, 56(3), 83-95.
[38] Oliver, R. L. J. J. o. m. r. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. 17(4), 460-469.
[39] Oliver, R. L., Rust, R. T., and Varki, S. (1997), “Customer Delight: Foundations, Findings, and Managerial Insight,” Journal of Retailing, Vol. 73, No. 3, pp.311–336.
[40] Oliver, R. L. (2014). Satisfaction: A behavioral perspective on the consumer: A behavioral perspective on the consumer: Routledge.
[41] Park, Y., & Gates, S. C. (2009). Towards real-time measurement of customer satisfaction using automatically generated call transcripts. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 1387-1396).
[42] Rao, K. S., Kumar, T. P., Anusha, K., Leela, B., Bhavana, I., & Gowtham, S. V. S. K. (2012). Emotion recognition from speech. International Journal of Computer Science and Information Technologies, 3(2), 3603-3607.
[43] Reichheld, F. F. (2003). The one number you need to grow. Harvard business review, 81(12), 46-55.
[44] Sezgen, E., Mason, K. J., & Mayer, R. (2019). Voice of airline passenger: A text mining approach to understand customer satisfaction. Journal of Air Transport Management, 77, 65-74.
[45] Sharma, S., Niedrich, R. W., & Dobbins, G. (1999). A Framework for Monitoring Customer Satisfaction:: An Empirical Illustration. Industrial Marketing Management, 28(3), 231-243.
[46] Singh, J. (1991). Understanding the structure of consumers’ satisfaction evaluations of service delivery. Journal of the Academy of Marketing Science, 19(3), 223-244.
[47] Soh, P. J., Woo, W. L., Sulaiman, H. A., Othman, M. A., & Saat, M. S. (Eds.). (2016). Advances in Machine Learning and Signal Processing: Proceedings of MALSIP 2015 (Vol. 387). Springer.
[48] Spreng, R. A. (1992). A comprehensive model of the consumer satisfaction formation process (Doctoral dissertation, Indiana University).
[49] Sun, L., Fu, S., & Wang, F. (2019). Decision tree SVM model with Fisher feature selection for speech emotion recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2019(1), 2.
[50] Tripathi, S., Tripathi, S., & Beigi, H. (2018). Multi-modal emotion recognition on iemocap dataset using deep learning. arXiv preprint arXiv:1804.05788.
[51] Venkatesh Yadav, M. S., T. V. RajiniKanth. (2019). <L39171081219.pdf>. doi:10.35940/ijitee.L3917.1081219
[52] Woodruff, R. B., Cadotte, E. R., & Jenkins, R. L. (1983). Modeling consumer satisfaction processes using experience-based norms. Journal of marketing research, 20(3), 296-304.
[53] Woodside, A. G., Frey, L. L., & Daly, R. T. (1989). Linking sort/ice anlity, customer satisfaction, and behavioral intention. Journal of health care marketing, 9(4), 5-17.
[54] Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International Journal of Hospitality Management, 76, 111-121.
[55] 鄭雅容(2020)。以LSTM模型判別嬰兒哭泣原因之研究
[56] 楊博喬(2019)。以語音分類態度及滿意度之研究
指導教授 許秉瑜(Ping-Yu Hsu) 審核日期 2020-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明