參考文獻 |
Awad, M., & Khanna, R. (2015). Efficient learning machines : Theories, concepts, and applications for engineers and system designers. https://doi.org/10.1007/978-1-4302-5990-9
Baker, K., Sun, H., Harman, A., Poon, K., & Rathmell, J. P. (2016). Clinical performance scores are independently associated with the American Board of Anesthesiology certification examination scores. Anesthesia & Analgesia, 122(6), 1992-1999.
Bellini, V., Guzzon, M., Bigliardi, B., Mordonini, M., Filippelli, S., & Bignami, E. (2020). Artificial intelligence: A new tool in operating room management. Role of machine learning models in operating room optimization. Journal of Medical Systems, 44(1), 20-29.
Bellini, V., Maestroni, U., & Bignami, E. (2019). Surgical block scheduling controlled by a machine: Reality or science fiction?. Journal of Medical Systems, 43(3), 1-2.
Bhatt, A. S., Carlson, G. W., & Deckers, P. J. (2014). Improving operating room turnover time: A systems based approach. Journal of Medical Systems, 38(12), 148-155.
Chen, Y., Gabriel, R. A., Kodali, B. S., & Urman, R. D. (2016). Effect of anesthesia staffing ratio on first-case surgical start time. Journal of Medical Systems, 40(5), 115-120.
Cheng, K., & Lu, Z. (2018). Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression. Computers & Structures, 194(1), 86-96.
Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1), 113-126.
Clarke, B., Fokoue, E., & Zhang, H. H. (2009). Principles and theory for data mining and machine learning. https://doi.org/10.1007/978-0-387-98135-2
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/ correlation analysis for the behavioral sciences (3rd ed.). Hillsdale, NJ: Lawrence Erlbaum.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
Devi, S. P., Rao, K. S., & Sangeetha, S. S. (2012). Prediction of surgery times and scheduling of operation theaters in optholmology department. Journal of Medical Systems, 36(2), 415-430.
Dinuzzo, F., Neve, M., Nicolao, G. D., & Gianazza, U. P. (2007). On the representer theorem and equivalent degrees of freedom of SVR. Journal of Machine Learning Research, 8(10), 2467-2495.
Drucker H., Burges C.J.C., Kaufman L., Smola A., & Vapnik V. (1997). Support vector regression machines. In Mozer M.C., Jordan M.I., & Petsche T. (Eds.), Advances in Neural Information Processing Systems 9 (pp. 155-161). Cambridge, MA: MIT Press. Retrieved from https://papers.nips.cc/paper/1238-support-vector-regression-machines
Dupont, F. W., Tung, A., Shahul, S. S., Pohlman, A., Joseph, S., Gottlieb, O., ... & Cutter, T. W. (2019). Transport of critically ill patients by the anesthesia versus the intensive care unit service: A before–after study of operating room workflows. Anesthesia & Analgesia, 129(3), 671-678.
Edelman, E. R., van Kuijk, S. M., Hamaekers, A. E., de Korte, M. J., van Merode, G. G., & Buhre, W. F. (2017). Improving the prediction of total surgical procedure time using linear regression modeling. Frontiers in Medicine, 4(1), 85-90.
Fairley, M., Scheinker, D., & Brandeau, M. L. (2019). Improving the efficiency of the operating room environment with an optimization and machine learning model. Health Care Management Science, 22(4), 756-767.
Ferschl, M. B., Feiner, J., Vu, L., Smith, D., & Rollins, M. D. (2020). A comparison of spinal anesthesia versus monitored anesthesia care with local anesthesia in minimally invasive fetal surgery. Anesthesia & Analgesia, 130(2), 409-415.
Fong, A. J., Smith, M., & Langerman, A. (2016). Efficiency improvement in the operating room. Journal of Surgical Research, 204(2), 371-383.
Han, J., Pei, J., & Kamber, M. (2012). Data mining: Concepts and techniques (3rd ed.). San Francisco, CA, USA: Elsevier.
Johannes, M., Brase, J. C., Fröhlich, H., Gade, S., Gehrmann, M., Fälth, M., ... & Beißbarth, T. (2010). Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics, 26(17), 2136-2144.
Mason, S. E., Nicolay, C. R., & Darzi, A. (2015). The use of lean and six sigma methodologies in surgery: A systematic review. The Surgeon, 13(2), 91-100.
Paulson, D.S. (2006). Handbook of regression and modeling: Applications for the clinical and pharmaceutical industries. New York, NY: Chapman & Hall, CRC.
Rambourg, J., Gaspard-Boulinc, H., Conversy, S., & Garbey, M. (2019). A continuum of interfaces to engage surgical staff in efficient collaboration. Journal of Medical Systems, 43(7), 184-192.
Rebala, G., Ravi, A., & Churiwala, S. (2019). An introduction to machine learning. https://doi.org/10.1007/978-3-030-15729-6
ShahabiKargar, Z., Khanna, S., Good, N., Sattar, A., Lind, J., & O’Dwyer, J. (2014). Predicting procedure duration to improve scheduling of elective surgery. In P. Duc-Nghia & P. Seong-Bae, (Eds.), Lecture Notes in Computer Science: Vol. 8862. PRICAI 2014: Trends in Artificial Intelligence (pp. 998-1009). Switzerland: Springer International Publishing. doi:10.1007/978-3-319-13560-1_86
Shahabikargar, Z., Khanna, S., Sattar, A., & Lind, J. (2017). Improved prediction of procedure duration for elective surgery. Health Technology and Informatics, 239(1), 133-138.
Simard, M., Sirois, C., & Candas, B. (2018). Validation of the combined comorbidity index of Charlson and Elixhauser to predict 30-day mortality across ICD-9 and ICD-10. Medical Care, 56(5), 441-447.
Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222.
Soh, K. W., Walker, C., O’Sullivan, M., & Wallace, J. (2020). An evaluation of the hybrid model for predicting surgery duration. Journal of Medical Systems, 44(2), 42-57.
Steinwart, I., Hush, D., & Scovel, C. (2006). An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Transactions on Information Theory, 52(10), 4635-4643.
Stepaniak, P. S., Heij, C., & De Vries, G. (2010). Modeling and prediction of surgical procedure times. Statistica Neerlandica, 64(1), 1-18.
Tsai, M. H., Hall, M. A., Cardinal, M. S., Breidenstein, M. W., Abajian, M. J., & Zubarik, R. S. (2020). Changing anesthesia block allocations improves endoscopy suite efficiency. Journal of Medical Systems, 44(1), 1-9.
Tuwatananurak, J. P., Zadeh, S., Xu, X., Vacanti, J. A., Fulton, W. R., Ehrenfeld, J. M., & Urman, R. D. (2019). Machine learning can improve estimation of surgical case duration: A pilot study. Journal of Medical Systems, 43(3), 44-50.
Zhao, B., Waterman, R. S., Urman, R. D., & Gabriel, R. A. (2019). A machine learning approach to predicting case duration for robot-assisted surgery. Journal of Medical Systems, 43(2), 32-39.
陳姵君,「醫院手術室效能影響因素與效能評估方法之發展」,國立中央大學,碩士論文,民國 102 年。 |