博碩士論文 107622602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:3.145.58.169
姓名 普爾班迪尼(Pambayun Purbandini)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 試問2017年比加半島(土耳其)的地震群是否為誘發性地震?從多年地震記錄分析的觀察
(Was the 2017 Biga Peninsula (Turkey) Swarm Induced? Insights from a Multiyear Analysis of Seismicity)
相關論文
★ 台灣東北部龜山島的地震活動特性★ 印尼Semeru火山地區之火山顫動非線性動態性質分析
★ Forecasting volcanic eruptions using permutation entropy variations in ambient seismic noise★ Nonlinear Dynamics of Volcanic Tremor Recorded at Mt. Erebus Volcano, Antarctica
★ 模擬在地熱型及佛卡諾型噴發中的火山彈道拋體軌跡,以台灣北部大屯山火山群中的七星山為例★ A reappraisal of seismicity recorded during the 1996 Gjalp eruption in Iceland using modern seismological methods
★ Duration-amplitude scaling of volcanic tremor recorded at Mt. Erebus volcano, Antarctica★ Permutation Entropy Variation of Seismic Noise prior to Eruptive Activity at Shinmoedake Volcano, Japan
★ Seismic Anisotropy of the Upper- and Lower-Crust in the South Aegean Inferred from Shear-Wave Splitting★ 由海底地震儀資料探討南沖繩海槽熱液活動
★ 日本新茂岳火山三次噴發週期地震噪聲中排列熵的時間變化★ 關於愛琴海岩石圈的異質性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自 2017 年 1 月開始, 土耳其西海岸的比加半島, 恰納卡萊地區的圖茲拉地熱田附近發生了群發性地震。這是自 1970 年開始的連續地震監測以來該地區的第一次記錄到的群發性地震。由於該群發性地震的觸發機制尚有爭議,本研究旨在調查2017年艾瓦哲克 (恰納卡萊) 地震群體是否可能由圖茲拉地熱田的活動觸發。 在這方面,我們使用了 2011 年初至 2018 年底來自希臘統一地震台網 (HUSN) 和波加濟奇大學坎迪利天文台和地震研究所 (KOERI) 地震台網的地震數據。波形數據是從歐洲綜合數據檔案館 (EIDA) 獲得的。 使用非線性概率算法 NLLOC 獲得了 1602 個事件的絕對位置。使用雙差技術確定了 1558 個事件的精確相對位置。 重新定位的事件似乎描繪出一種類似於李斯特性斷層的構造,具有北西-東南向趨勢,深度在 5 km 至 〜20 km 之間。 由地震震源的分佈可知此斷層的再活動發生在群發性地震期間。 我們測量了 Vp/Vs 比率,估計了剪力波分裂參數 (時間差,快S波極化方向), 並計算了事件發生前、中、後的b值。 此外,我們還估計了地震期內注入持續時間 (t0) 的擴散率值 (D)。在群發性地震出現之前, 我們觀察到低b值 (〜0.79) 和高 Vp/Vs 比 (〜1.69), 並且時間差和快S波極化方向沒有明顯變化。地震開始後不久, Vp/Vs 比似乎穩定 (〜1.67), 時間差從 〜0.2 增加到0.44 s。 此時, D值高 (145 m2/s), t0最小。 在此期間, 快S波極化方向顯示出強烈的不穩定性。 到地震結束時, Vp/Vs比和時間差分別下降至〜1.53和0.11 s, 而b值較高 (1.34), D值減小至 35 m2/s (t0較)。 我們所觀察到的低b值說明在活斷層附近有一段高應力時期。再來是較高的Vp/Vs比, 且在群發性地震開始之後時間差的上升, 很有可能是由於充滿流體的岩石中的裂縫密度增加所致。 在群發性地震期間, 所觀察到的快S波極化方向的不穩定性可能與活斷層的高孔隙流體壓力有關;其中,流體的擴散可能具有關鍵作用。 這可能與研究區域附近的TGF地區的液體注入活動有關。
摘要(英) In the western coast of Turkey, an earthquake swarm occurred near the Tuzla Geothermal Field in Çanakkale region, Biga Peninsula, that started in January 2017. This was the first recorded swarm in the region since 1970, when the continuous seismic monitoring began. As the triggering mechanism of the swarm is still debatable, this study aims to investigate whether the 2017 Ayvacik (Çanakkale) earthquake swarm was potentially triggered by activities in the Tuzla Geothermal Field. In this respect, we used the earthquake data from both the Hellenic Unified Seismological Network (HUSN) and Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI) seismic network from early 2011 to the end of 2018. The waveform data was requested from the European Integrated Data Archive (EIDA). Absolute locations of 1602 events were obtained by using the nonlinear probabilistic algorithm NLLOC. Precise relative locations were determined for 1558 events using the double-difference technique. The relocated events appear to delineate a structure that resembles a listric fault with NW-SE trending and depths of 5 km to ~20 km. The distribution of the earthquake hypocenters suggests the reactivation of the fault during the swarm. We measured the Vp/Vs ratio, estimated shear wave splitting parameters (delay time , fast direction ), and calculated the b-value in the period before, during, and after the swarm. Further, we also estimated the diffusivity value (D) with the duration of injection (t0) in the swarm period. Before the swarm, we observed low b-value (~0.79) with high Vp/Vs ratio (~1.69) and no significant changes in delay time and fast direction. Soon after the swarm begun, Vp/Vs ratio seemed to be stable (~1.67) and delay time increased from ~0.2 to 0.44 s. At this time, the D value was high (145 m2/s) with the minimum t0. Fast direction showed strong instability during this period. By the end of the swarm, Vp/Vs ratio and delay time dropped down to ~1.53 and 0.11 s, respectively, while b-value was high (1.34) and D value was decreasing to 35 m2/s with longer t0. The observed low b-value before the swarm indicates a period of high stress near the activated fault. This was followed by high Vp/Vs ratio and an increase in delay time after the swarm begun, probably due to the increase of crack density within the fluid-filled rocks. The instability of the observed fast direction during the swarm can be associated with high pore-fluid pressure along the activated fault. We suggest that the diffusion of fluids possibly played a key role during the period of the swarm. This can potentially be associated with fluid injection activities at TGF site near the study area.
關鍵字(中) ★ 誘發性地震活動
★ 地震非均向性
★ 圖茲拉地熱田
★ 波速比
關鍵字(英) ★ Induced Seismicity
★ Seismic Anisotropy
★ Tuzla Geothermal Field
★ Vp/Vs
論文目次 ABSTRACT............................................................................................................................ i
ACKNOWLEDGEMENTS................................................................................................... ii
TABLE OF CONTENTS....................................................................................................... iii
LIST OF FIGURES................................................................................................................ iv
LIST OF TABLES................................................................................................................... v
CHAPTER 1
INTRODUCTION................................................................................................................... 1
1.1. Tectonic Setting of the Aegean and Biga Peninsula............................................... 1
1.2. Review of Previous Studies.................................................................................... 2
1.3. Aims and Structure of This Thesis......................................................................... 3
CHAPTER 2
DATA DESCRIPTION............................................................................................................ 7
2.1. Hellenic Unified Seismological Network (HUSN)................................................ 7
2.2. KOERI Seismic Network....................................................................................... 8
2.3. Data Pre-processing................................................................................................ 8
CHAPTER 3
METHODOLOGY AND RESULTS.................................................................................... 11
3.1. Earthquake Locations........................................................................................... 11
3.1.1. Absolute Locations................................................................................ 11
3.1.2. Relative Locations................................................................................. 11
3.2. Vp/Vs Ratio.......................................................................................................... 13
3.3. Crustal Anisotropy................................................................................................ 14
3.4. b-values................................................................................................................ 16
3.5. Hydraulic Diffusivity............................................................................................ 17
CHAPTER 4
DISCUSSION AND CONCLUSIONS................................................................................. 30
4.1. Intepretation of the results.................................................................................... 30
4.2. Conclusions.......................................................................................................... 33
REFERENCES...................................................................................................................... 34
參考文獻 Abdikan, S., Imamoglu, M., Alasag, T., Toker, M., Kutoglu, S. H., and Sahin, S., 2019. InSAR Analysis of Avyacik 2017 (Mw 5.3) earthquake swarm (Canakkale, NW-Turkey). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W13, 1907-1911. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1907-2019.
Bohnhoff, M., Martínez-Garzón, P., Bulut, F., Stierle, E., and Ben-Zion, Y., 2016. Maximum earthquake magnitudes along different sections of the North Anatolian fault zone. Tectonophysics, 674, 147–165. https://doi.org/10.1016/j.tecto.2016.02.028.
Bulut, F., E. Havazli., C. Yaltirak., A. Dogru., A. Sabuncu., H. Özener., 2018. The 2017 Ayvacik earthquake sequence: a listric fault activated beneath Tuzla/Çanakkale Geothermal Reservoir (Western Turkey). Proceedings 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 12-14.
Cambaz, M. D., Turhan, F., Yılmazer, M., Kekovalı, K., Necmioğlu, Ö, and Kalafat, D., 2019. A review on Kandili Observatory and Earthquake Research Institute (KOERI) Seismic Network and earthquake catalog: 2008-2018. Adv. Geosci, 51, 15-23. https://doi.org/10.5194/adgeo-51-15-2019.
Caputo R., and Pavlides, S., 2013. The Greek Database of Seismogenic Sources (GreDaSS), Version 2.0.0: A compilation of potential seismogenic source (Mw>5.5) in the Aegean region. https://doi.org/10.15160/unife/gredass/0200.
Çetiner, Z. S., Ertekin, C., and Gültay, B., 2016.Initial assessment of public perception and acceptance of geothermal energy applications in Çanakkale, NW Turkey. Energy Procedia, 97, 194-201.
Chiarabba, C., and Moreti, M., 2006. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova, 18, 373-379. https://doi.org/10.1111/j.1365-3121.2006.00701.x
Crampin, S., 1999. Calculable fluid-rock interactions. J. Geol. Soc, 156, 501-514. https://doi.org/10.1144/gsjgs.156.3.0501
D’Alessandro, A., Papanastassiou, D., and Baskoutas, I., 2011. Hellenic Unified Seismological Network: an evaluation of its performance through SNES method. Geophys. J. Int, 185, 3, 1417–1430. https://doi.org/10.1111/j.1365-246X.2011.05018.x.
Demirel, Z., Yildirim, T., and Burçak, M., 2004. Preliminary study on the occurrence of geothermal systems in the tectonic compressional regions: an example from the Derman geothermal field in the Biga Peninsula, Turkey. J. Asian Earth Sci, 22, 5, 495-501. https://doi.org/10.1016/S1367-9120(03)00087-7.
Dimitriadis, I., Karagianni, E., Panagiotopoulos, D., Papazachos, C., Hatzidimitriou, P., Bohnoff, M., Rische, M., Meier, T., 2009. Seismicity and active tectonics at Kolumbo Reef (Aegean Sea, Greece): monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network. Tectonophysics, 465, 136-149. https://doi.org/10.1016/j.tecto.2008.11.005.
Evangelidis, C. P., and Melis, N. S., 2012. Ambient noise levels in Greece as recorded at the Hellenic Unified Seismic Network. Bull. Seismol. Soc. Am, 102, 6, 2507–2517. https://doi.org/10.1785/0120110319.
Ganas, A., Kourkouli, P., Briole, P., Moshou, A., Elias, P., and Parcharidis, I., 2018. Coseismic displacements from moderate-size earthquakes mapped by sentinel-1 differential interferometry: The case of February 2017 Gulpinar earthquake sequence (Biga Peninsula, Turkey). Remote Sensing, 10, 7, https://doi.org/10.3390/rs10071089.
Görgün, E., and Albora, A. M., 2017. Seismotectonic investigation of Biga Peninsula in SW Marmara region using steerable filter technique, potential field data and recent seismicity. Pure Appl. Geophys., 174,10, 3889–3904. https://doi.org/10.1007/s00024-017-1604-0.
Gulia, L., Tormann, T., Wiemer, S., Herrmann, M.m and Seif, S., 2016. Short-term probabilistic earthquake risk assessment considering time-dependent b values. Geophys. Res. Lett, 43, 3. https://doi.org/10.1002/2015GL066686.
Jackson, J., 1994. Active tectonics of the Aegean region. Annu. Rev. Earth Planet. Sci., 22, 239-71.
Jo, E., and Hong, T. K., 2013. Vp/Vs ratios in the upper crust of the southern Korean Peninsula and their correlations with seismic and geophysical properties. J. Asian Earth Sci, 66, 204–214. https://doi.org/10.1016/j.jseaes.2013.01.008.
Kaaden, G. v. d., 1959. Age relations of magmatic activity and of metamorphic processes in the northwestern part of Anatolia-Turkey. Bull. Min. Res. Expl. Ins. Turkey, 52, 15-33.
Kalafatçioğlu, A., 1963. Geology around Ezinc and Bozcaada and the age of the limestones and serpentines. Bull. Min. Res. Expl. Ins. Turkey, 60, 61-70.
Konstantinou, K. I., 2018. Estimation of optimum velocity model and precise earthquake locations in NE Aegean: implications for seismotectonics and seismic hazard. J. Geodyn., 121, 143-154. https://doi.org/10.1016/j.jog.2018.07.005.
Konstantinou, K. I., Mouslopoulou, V., Liang, W. T., Heidbach, O., Oncken, O., and Suppe, J., 2016. Present-day crustal stress field in Greece inferred from regional-scale damped inversion of earthquake focal mechanism. J. Geophys. Res. Solid Earth, 121. https://doi.org/10.1002/2016JB013272.
Lomax, A., Zollo, A., Capuano, P., and Virieux, J., 2001. Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophys. J. Int, 146, 313-331. https://doi.org/10.1046/j.0956-540x.2001.01444.x.
Lomax, A., Virieux, J., Volant, P., Berge-Thierry, C., 2000. Probabilistic earthquake location in 3D and layered models. In: Advances in Seismic Event Location, Ed: C.H. Thurber and N. Rabinowitz, 101–134.
Lucente, F. P., De Gori, P., Margheriti, L., Piccinini, D., Di Bona, M., Chiarabba, C., and Agostinetti, N. P., 2010. Temporal variation of seismic velocity and anisotropy before the 2009 Mw 6.3 L’Aquila Earthquake, Italy. Geology, 38, 11, 1015-1018. https://doi.org/10.1130/G31463.1.
Marzocchi, W., and Sandri, L., 2003. A review and new insights on the estimation of the b-value and its uncertainty. Ann. Geophys, 46, 6.
Mesimeri, M., Kourouklas, C., Papadimitriou, E., Karakostas, V., and Kementzetzidou, D., 2018. Analysis of microseismicity associated with the 2017 seismic swarm near the Aegean coast of NW Turkey. Acta Geophysica, 66, 4, 479-495. https://doi.org/10.1007/s11600-018-0157-7.
Nalbant, S. S., Hubert, A., and King G. C. P., 1998. Stress coupling between earthquake in northwest Turkey and the north Aegean Sea. J. Geophys. Res, 103, B10, 24469-24486. https://doi.org/10.1029/98jb01491.
Nur, A., 1972. Dilatancy, pore fluids, and premonitory variations of ts/tp travel times. Bull. Seism. Soc. Am., 62, 1217-1222.
Özden, S., Över, S., Poyraz, S. A., Güneş, Y., and Pınar, A., 2018. Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey. J. Asian Earth Sci, 154, 125–141. https://doi.org/10.1016/j.jseaes.2017.12.021.
Ozener, H., Arpat, E., Ergintav, S., Dogru, A., Cakmak, R., Turgut, B., and Dogan, U., 2010. Kinematics of the eastern part of the North Anatolian Fault Zone. J. Geodyn, 49. 3-4. 141-150. http://doi.org/10.1016/j.jog.2010.01.003.
Parotidis, M., Shapiro, S. A., and Rothert, E., 2004. Back front of seismicity induced after termination of borehole fluid injection. Geophys. Res. Lett, 31, L02612. https://doi.org/ 10.1029/2003GL018987, 2004.
Savage, M. K., Wessel, A., Teanby, N. A., and Hurst, A. W., 2010. Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. J.Geophys. Res, 115, B12. https://doi.org/10.1029/2010JB007722.
Şengün, F., Yiğitbaş, E., and Tunç, I. O., 2011. Geology and tectonic emplacement of eclogite and blueschists, Biga Peninsula, Northwest Turkey. Turkish J. Earth. Sci, 20, 273-285. https://doi.org/10.3906/yer-0912-75.
Shapiro, S. A., Rothert, E., Rath, V., and Rindschwentner, J., 2002. Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophys, 67, 1, 212-220. https://doi.org/10.1190/1.1451597.
Shapiro, S. A., Huenges, E., and Borm, G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int, 131, F15-F18. https://doi.org/10.1111/j.1365-246X.1997.tb01215.x
Silver, P. G., & Chan, W. W., 1991. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res, 96, B10, 16429. https://doi.org/10.1029/91jb00899.
Silver, P. G., and Savage, M. K., 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophys. J. Int., 119, 3, 949–963. https://doi.org/10.1111/j.1365-246x.1994.tb04027.x
Taymaz, T., Eyidoĝan, H., and Jackson, J., 1991. Source parameters of large earthquakes in the East Anatolia Zone (Turkey). Geophys. J. Int, 106, 537-550. https://doi.org/10.1111/j.1365-246X.1991.tb06328.x.
Waldhauser, F., 2001. HypoDD: a computer program to compute double-difference hypocenter locations. U.S. Geol. Surv. Open File Rep, 01-113, 25. https://doi.org/10.3133/ofr01113.
Waldhauser, F., and Ellsworth, W. L., 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California. Bull. Seismol. Soc. Am. 90, 1353-1368. https://doi.org/10.1785/0120000006.
Wortel, M. J. R., Goes, S. D. B., and Spakman, W., 1990. Structure and seismicity of the Aegean subduction zone. Terra Nova, 2, 6, 554-562. https://doi.org10.1111/j.1365-3121.1990.tb00120.x.
指導教授 柯士達(K. I. Konstantinou) 審核日期 2020-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明