參考文獻 |
[1] J. M. de Araujo Lobo, “Koutango: under reported arboviral disease in West Africa,” 2012.
[2] WHO, Dengue and severe dengue, 2017.
[3] J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, and C. A. Castañeda-Orjuela, “The global burden of dengue: an analysis from the Global Burden of Disease Study 2013,” The Lancet infectious diseases, vol. 16, no. 6, pp. 712-723, 2016.
[4] O. Dyer, “Dengue: Philippines declares national epidemic as cases surge across South East Asia,” BMJ: British Medical Journal (Online), vol. 366, 2019.
[5] S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. M. Drake, J. S. Brownstein, A. G. Hoen, and O. Sankoh, “The global distribution and burden of dengue,” Nature, vol. 496, no. 7446, pp. 504-507, 2013.
[6] G. C. Perng, T.-C. Ho, H.-I. Shih, C.-H. Lee, P.-W. Huang, C.-H. Chung, N.-Y. Ko, W.-C. Ko, and Y.-W. Chien, “Seroprevalence of Zika and dengue virus antibodies among migrant workers, Taiwan, 2017,” Emerging infectious diseases, vol. 25, no. 4, pp. 814, 2019.
[7] C.-Y. Sher, H. T. Wong, and Y.-C. Lin, “The Impact of Dengue on Economic Growth: The Case of Southern Taiwan,” International Journal of Environmental Research and Public Health, vol. 17, no. 3, pp. 750, 2020.
[8] D.-L. Luh, C.-C. Liu, Y.-R. Luo, and S.-C. Chen, “Economic cost and burden of dengue during epidemics and non-epidemic years in Taiwan,” Journal of infection and public health, vol. 11, no. 2, pp. 215-223, 2018.
[9] J. Hassard, K. R. Teoh, and T. Cox, “Estimating the economic burden posed by work-related violence to society: a systematic review of cost-of-illness studies,” Safety science, vol. 116, pp. 208-221, 2019.
[10] T. Shiri, K. Khan, K. Keaney, G. Mukherjee, N. D. McCarthy, and S. Petrou, “Pneumococcal disease: a systematic review of health utilities, resource use, costs, and economic evaluations of interventions,” Value in Health, 2019.
[11] S. Tricarico, H. C. McNeil, D. W. Cleary, M. G. Head, V. Lim, I. K. S. Yap, C. C. Wie, C. S. Tan, M. N. Norazmi, and I. Aziah, “Pneumococcal conjugate vaccine implementation in middle-income countries,” Pneumonia, vol. 9, no. 1, pp. 6, 2017.
[12] A. M. Ayob, "Dengue Spread Model using Climate Variables."
[13] R. Rappuoli, S. Black, and D. E. Bloom, “Vaccines and global health: In search of a sustainable model for vaccine development and delivery,” Science Translational Medicine, vol. 11, no. 497, pp. eaaw2888, 2019.
[14] A. Honda, N. Krucien, M. Ryan, I. S. N. Diouf, M. Salla, M. Nagai, and N. Fujita, “For more than money: willingness of health professionals to stay in remote Senegal,” Human resources for health, vol. 17, no. 1, pp. 28, 2019.
[15] U. L. Lestari, C. Anwar, and R. Ristiawati, "Spatial Analysis Case DHF (Dengue Hemorrhagic Fever) in The District Pekalongan Year 2015-2017." pp. 140-148.
[16] E. P. Astuti, P. W. Dhewantara, H. Prasetyowati, M. Ipa, C. Herawati, and K. Hendrayana, “Paediatric dengue infection in Cirebon, Indonesia: a temporal and spatial analysis of notified dengue incidence to inform surveillance,” Parasites & vectors, vol. 12, no. 1, pp. 186, 2019.
[17] M. Pujianto, M. Raharjo, and N. Nurjazuli, “Spatial Pattern Analysis on Dengue Hemorrhagic Fever (DHF) Disease in Tanjung Emas Port Area using Moran Index,” International Journal of English Literature and Social Sciences (IJELS), vol. 5, no. 2, 2020.
[18] S. Mahmood, A. Irshad, J. M. Nasir, F. Sharif, and S. H. Farooqi, “Spatiotemporal analysis of dengue outbreaks in Samanabad town, Lahore metropolitan area, using geospatial techniques,” Environmental monitoring and assessment, vol. 191, no. 2, pp. 55, 2019.
[19] L. Tanner, M. Schreiber, J. G. Low, A. Ong, T. Tolfvenstam, Y. L. Lai, L. C. Ng, Y. S. Leo, L. T. Puong, and S. G. Vasudevan, “Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness,” PLoS neglected tropical diseases, vol. 2, no. 3, 2008.
[20] V. J. Lee, D. Lye, Y. Sun, and Y. Leo, “Decision tree algorithm in deciding hospitalization for adult patients with dengue haemorrhagic fever in Singapore,” Tropical Medicine & International Health, vol. 14, no. 9, pp. 1154-1159, 2009.
[21] Y. L. Hii, H. Zhu, N. Ng, L. C. Ng, and J. Rocklöv, “Forecast of dengue incidence using temperature and rainfall,” PLoS neglected tropical diseases, vol. 6, no. 11, 2012.
[22] S. Wongkoon, M. Jaroensutasinee, and K. Jaroensutasinee, “Weather factors influencing the occurrence of dengue fever in Nakhon Si Thammarat, Thailand,” Trop Biomed, vol. 30, no. 4, pp. 631-41, 2013.
[23] T.-C. Chan, T.-H. Hu, and J.-S. Hwang, “Daily forecast of dengue fever incidents for urban villages in a city,” International journal of health geographics, vol. 14, no. 1, pp. 9, 2015.
[24] L. E. Hugo, J. A. Jeffery, B. J. Trewin, L. F. Wockner, N. T. Yen, N. H. Le, L. T. Nghia, E. Hine, P. A. Ryan, and B. H. Kay, “Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam,” PLoS neglected tropical diseases, vol. 8, no. 2, 2014.
[25] P. Siriyasatien, A. Phumee, P. Ongruk, K. Jampachaisri, and K. Kesorn, “Analysis of significant factors for dengue fever incidence prediction,” BMC bioinformatics, vol. 17, no. 1, pp. 166, 2016.
[26] S. Sang, W. Yin, P. Bi, H. Zhang, C. Wang, X. Liu, B. Chen, W. Yang, and Q. Liu, “Predicting local dengue transmission in Guangzhou, China, through the influence of imported cases, mosquito density and climate variability,” PloS one, vol. 9, no. 7, 2014.
[27] F. Ibrahim, T. Faisal, M. M. Salim, and M. N. Taib, “Non-invasive diagnosis of risk in dengue patients using bioelectrical impedance analysis and artificial neural network,” Medical & biological engineering & computing, vol. 48, no. 11, pp. 1141-1148, 2010.
[28] F. Ibrahim, M. N. Taib, W. A. B. W. Abas, C. C. Guan, and S. Sulaiman, “A novel dengue fever (DF) and dengue haemorrhagic fever (DHF) analysis using artificial neural network (ANN),” Computer methods and programs in biomedicine, vol. 79, no. 3, pp. 273-281, 2005.
[29] A. Ghaderi, B. M. Sanandaji, and F. Ghaderi, “Deep forecast: deep learning-based spatio-temporal forecasting,” arXiv preprint arXiv:1707.08110, 2017.
[30] M. Hossain, B. Rekabdar, S. J. Louis, and S. Dascalu, "Forecasting the weather of Nevada: A deep learning approach." pp. 1-6.
[31] P. Siriyasatien, S. Chadsuthi, K. Jampachaisri, and K. Kesorn, “Dengue epidemics prediction: A survey of the state-of-the-art based on data science processes,” IEEE Access, vol. 6, pp. 53757-53795, 2018.
[32] A. Ashiquzzaman, A. K. Tushar, M. R. Islam, D. Shon, K. Im, J.-H. Park, D.-S. Lim, and J. Kim, "Reduction of overfitting in diabetes prediction using deep learning neural network," IT Convergence and Security 2017, pp. 35-43: Springer, 2018.
[33] A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, “A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition,” Sensors, vol. 17, no. 9, pp. 2022, 2017.
[34] K. Kesorn, P. Ongruk, J. Chompoosri, A. Phumee, U. Thavara, A. Tawatsin, and P. Siriyasatien, “Morbidity rate prediction of dengue hemorrhagic fever (DHF) using the support vector machine and the Aedes aegypti infection rate in similar climates and geographical areas,” PloS one, vol. 10, no. 5, 2015.
[35] K. D. Sharma, R. S. Mahabir, K. M. Curtin, J. M. Sutherland, J. B. Agard, and D. D. Chadee, “Exploratory space-time analysis of dengue incidence in Trinidad: a retrospective study using travel hubs as dispersal points, 1998–2004,” Parasites & vectors, vol. 7, no. 1, pp. 341, 2014.
[36] C. Chauhan, S. K. Behura, B. Debruyn, D. D. Lovin, B. W. Harker, C. Gomez-Machorro, A. Mori, J. Romero-Severson, and D. W. Severson, “Comparative expression profiles of midgut genes in dengue virus refractory and susceptible Aedes aegypti across critical period for virus infection,” PLoS One, vol. 7, no. 10, 2012.
[37] H. L. Nguyen, T. H. Duong, C. P. Nguyen, D. C. Nguyen, T. P. Chiem, M. H. Nguyen, T. N. M. Nguyen, and H. V. Nguyen, “Specific K-mean clustering-based perceptron for dengue prediction,” International Journal of Intelligent Information and Database Systems, vol. 10, no. 3-4, pp. 269-288, 2017.
[38] N. Mathur, V. S. Asirvadam, S. C. Dass, and B. S. Gill, "Visualization of dengue incidences for vulnerability using K-means." pp. 569-573.
[39] P. Manivannan, and P. I. Devi, "Dengue fever prediction using K-means clustering algorithm." pp. 1-5.
[40] M. A. Johansson, N. G. Reich, A. Hota, J. S. Brownstein, and M. Santillana, “Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico,” Scientific reports, vol. 6, pp. 33707, 2016.
[41] M. Gharbi, P. Quenel, J. Gustave, S. Cassadou, G. La Ruche, L. Girdary, and L. Marrama, “Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors,” BMC infectious diseases, vol. 11, no. 1, pp. 166, 2011.
[42] S. Bhatnagar, V. Lal, S. D. Gupta, and O. P. Gupta, “Forecasting incidence of dengue in Rajasthan, using time series analyses,” Indian journal of public health, vol. 56, no. 4, pp. 281, 2012.
[43] C. C. Ho, and C.-Y. Ting, "Time series analysis and forecasting of dengue using open data." pp. 51-63.
[44] A. Lal, T. Ikeda, N. French, M. G. Baker, and S. Hales, “Climate variability, weather and enteric disease incidence in New Zealand: time series analysis,” PLoS One, vol. 8, no. 12, 2013.
[45] H. Lin, L. Yang, Q. Liu, T. Wang, S. R. Hossain, S. C. Ho, and L. Tian, “Time series analysis of Japanese encephalitis and weather in Linyi City, China,” International journal of public health, vol. 57, no. 2, pp. 289-296, 2012.
[46] F. A. Siregar, T. Makmur, and S. Saprin, "Forecasting dengue hemorrhagic fever cases using ARIMA model: a case study in Asahan district." p. 012032.
[47] A. L. Buczak, B. Baugher, S. M. Babin, L. C. Ramac-Thomas, E. Guven, Y. Elbert, P. T. Koshute, J. M. S. Velasco, V. G. Roque Jr, and E. A. Tayag, “Prediction of high incidence of dengue in the Philippines,” PLoS neglected tropical diseases, vol. 8, no. 4, 2014.
[48] D. H. Barmak, C. O. Dorso, M. Otero, and H. G. Solari, “Dengue epidemics and human mobility,” Physical Review E, vol. 84, no. 1, pp. 011901, 2011.
[49] D. H. Barmak, C. O. Dorso, and M. Otero, “Modelling dengue epidemic spreading with human mobility,” Physica A: Statistical Mechanics and its Applications, vol. 447, pp. 129-140, 2016.
[50] L. C. de Castro Medeiros, C. A. R. Castilho, C. Braga, W. V. de Souza, L. Regis, and A. M. V. Monteiro, “Modeling the dynamic transmission of dengue fever: investigating disease persistence,” PLOS neglected tropical diseases, vol. 5, no. 1, 2011.
[51] P. Bajardi, C. Poletto, J. J. Ramasco, M. Tizzoni, V. Colizza, and A. Vespignani, “Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic,” PloS one, vol. 6, no. 1, 2011.
[52] L. A. Rvachev, and I. M. Longini Jr, “A mathematical model for the global spread of influenza,” Mathematical biosciences, vol. 75, no. 1, pp. 3-22, 1985.
[53] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding individual human mobility patterns,” nature, vol. 453, no. 7196, pp. 779-782, 2008.
[54] A. D. Cliff, J. Ord, P. Haggett, and G. Versey, Spatial diffusion: an historical geography of epidemics in an island community: CUP Archive, 1981.
[55] L. Anselin, “Local indicators of spatial association—LISA,” Geographical analysis, vol. 27, no. 2, pp. 93-115, 1995.
[56] J. MacQueen, "Some methods for classification and analysis of multivariate observations." pp. 281-297.
[57] M. J. Zaki, “SPADE: An efficient algorithm for mining frequent sequences,” Machine learning, vol. 42, no. 1-2, pp. 31-60, 2001. |