博碩士論文 106622606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.191.24.202
姓名 法東尼(Fandy Adji Fachtony)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 以部分波場逆推及模擬對沿TAIGER T6測線的台灣北部地區進行深部構造成像
(Constrained Wavefield Inversion and Simulation for Deep Structure Imaging along TAIGER T6 Line in Northern Taiwan)
相關論文
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用三維有限差分法模擬與分析台北盆地的場址放大效應★ 台北盆地的場址效應放大效應-譜比法應用於強震資料與理論分析的探討
★ 震波走時於台灣三維參考速度模型評估、地震定位及地利地區深部速度構造的研究★ 台灣地區參考莫荷面傾角變化的探討
★ 台灣西南部地殼變形與地震活動相關性研究★ 台灣西南外海多頻道震測之甲烷水合物與海洋精細構造成像研究
★ 透地雷達特性分析應用於油品污染物探測★ 測井資料的分析於兩處海底甲烷冰蘊藏區: 北阿拉斯加埃爾伯特山和墨西哥灣綠色峽谷的實際應用
★ 台灣西南海域下枋寮盆地甲烷水合物之AVO分析★ 台灣西南下枋寮盆地天然氣水合物調查同中點集的AVA/AVO模擬、分析和逆推
★ 台灣南部的體波與表面波波場逆推:應用於TAIGER T4b寬角度折射/反射資料★ 中國西南陸坡天然氣水合物沈積環境特徵的AVO和淺部構造量化分析
★ Pre-Stack Diffraction Stack Depth Migration of Active Source Short-offset Marine and Long-offset Seismic Data★ 台灣西南近海Formosa Ridge天然氣水合物和游離氣岩石物理參數估算
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用資料為TAIGER T6測線,係為台灣2008年的台灣大地動力學國際合作研究計畫(TAIGER)所進行之地殼尺度寬角度折射/反射(WARR)探勘測線之一。北部陣列由西向東跨越北台灣並在其上有四個炸點(N1, N2, N3, N4) ,共配置有456個平均間距為200公尺的受波器。本測線幾何屬於蜿蜒測線,各炸點能量並未一致,各區域躁訊比也不盡相同。其中由於不規律的炸點及測站分布、強烈的側向速度變化及高程變化,使得資料中有明顯的三維波傳現象,因此常用的標準震測資料處理流程並不能完整的施行並滿足研究需求。本研究透過資料修剪、增益處理、解迴旋處理、濾波處理及區域傾斜疊加變換(LSST),對資料狀況做初步改善。
為了幫助理解逆推的行為及特性,本研究首先使用三種地殼尺度之模型進行模擬: (1) 表面無高程起伏之層狀模型,(2) 表面有高程起伏之層狀模型, (3) 含有高程起伏及側向速度變化之模型。我們以Specfem2D軟體進行模擬運算,並分析了炸點、測站高程效應,與速度變化所造成的影響。結果顯示當逆推過程考慮高程效應時,無論資料做靜態處理與否,均會導致逆推結果之速度較不平滑。我們接著使用全支距及部分支距的實際資料進行波形逆推,從四個炸點的震測資料獲得了七個一維速度模型,並以此產生類二維的速度模型(quasi-2D velocity)。透過Kirchhoff Wave Equation Datuming (KWED)對資料進行靜態修正,處理後的資料對於三種不同的模型有較佳的逆推結果。隨後我們以波形模擬及走時殘差分析對速度模型進行檢驗,其結果與實際資料之誤差非常小。接著我們嘗試對波形逆推所得之模型進行了走時逆推(travel time inversion),以將類二維模型轉為二維模型,並提升解析度。結果顯示其確實有助於增進近地表區域及位於雪山、中央山脈下高速異常區之解析度。走時殘差分佈亦顯示誤差大幅減少,N1至N3炸點資料之誤差由 ±0.5秒變為 ±0.2秒,N4炸點則由 ±1.5秒變為 ±0.5秒。在與參考研究之模型比較及驗證後,本研究所主張之模型於淺部構造有較高之精確度及解析度。
根據逆推之速度模型及深度偏移成像,我們可以看到西部平原沉積盆地存在厚度接近三公里,具有2.6至4公里/秒相對低速的區域,並由5.0公里/秒至5.5公里/秒之區間勾勒出一向東尖滅之速度構造;此外由偏移成像亦可發現在淺層數公里內也存在有明顯構造邊界,此構造或與低綠片岩相變質基岩有關。此現象可能代表同生裂谷沉積物及基盤於抬升過程中剝露而出。由速度模型5.0公里/秒至5.5公里/秒之區間則可發現一向東尖滅速度構造;由偏移成像亦可發現在淺層數公里內存在有明顯構造邊界,與低綠片岩相變質基岩有關。此現象可能代表同生斷陷沉積物及基盤於抬升過程中剝露而出。位於雪山山脈下的高速異常區與北台灣之電性構造有關。位於深度20公里,側向距離61公里至85公里處,則有Datong Bright Spot (DBS)反射面,可能與超鐵鎂質侵入岩體有關。位於中央山脈下的高速異常區與由超基性岩及大理岩組成的大南澳片岩露頭有關。此外,受限於資料品質及陣列孔徑的不足,莫荷不連續面並沒有在結果中發現。
摘要(英) TAIGER T6 transects is one of the four crustal-scale Wide Angle Refraction/Reflection (WARR) survey lines under TAiwan Integrated GEodynamics Research (TAIGER) project conducted in 2008 in Taiwan. The north main array consist of four shot points (N1, N2, N3, and N4) across northern Taiwan from west to east. A total of 456 geophones deployed with receiver interval of ~200m on average. However, the recorded data suffers from crooked survey line geometry, uneven shot energy, noise level. Near-surface elevation effects caused by the irregular source and receiver spacing, strong lateral velocity variations and rapid topography changes produce apparent 3D wave propagation so that the standard seismic data processing could not be fully applied. To compensate above-mentioned drawbacks, pre-conditioning of the data including trace editing and enhancements, deconvolution, frequency filtering, and Localized Slant Stack Transformation (LSST) was applied.
To study the inversion behaviors and features, feasibility studies of three crustal scale synthetic models containing: (1) flat layers without topography, (2) flat layers with topographic, (3) laterally varying topographic velocity models. Synthetic data is produced from Specfem2D computations. Effects of source and/or receiver elevation, velocity variation, and the combination of all were studied. Wavefield inversion is robust and stable for all test models. Inverted 1D velocity becomes less smooth when elevation effects are included with and without elevation corrections. Implementation of full-offset and offset-dependent wavefield inversion approach on the real data able to provide reasonable quasi-2D velocity models constructed based on seven 1D velocity profiles from four shots. Together with the inversion results from elevation corrected data through Kirchhoff Wave Equation Datuming (KWED), an adjusted model can be extracted to accommodate the best features among three different models. Quality check of the velocity models through wave simulations and travel time residual distributions show good fit and minimum error compared to the real data. Furthermore, travel time inversion were implemented based on the derived model from wavefield inversion to convert quasi-2D to pure 2D model as well as improve the resolution. Travel time inversion able to improve the resolution related to the near surface of the model as well as the high velocity anomaly below the Hsuehshan Range and Central Range. Also, travel time residual distributions shows that, the travel time inversion significantly improve the error, which range from ±0.5s to ±0.2s for N1-N3 and ±1.5s to ±0.5s for N4. Comparisons and validations between proposed model and several reference model shows improvement at shallow structure shallow part with sufficient accuracy and resolution through limited datasets and consistencies on the large scale.
Based on proposed velocity model and depth migrated image, several structure feature can be outlined. Existing sedimentary basin with layer thickness of ~3 km and relative low velocity from ~2.6 to 4 km/s in the Western Foothill. Thinning eastward feature judging from seismic velocity between 5.0 km/s – 5.5 km/s and highlighted interfaces from migrated image in the upper part within few kilometers presumably can be linked to the low-grade greenschist facies metamorphic basement. Possible indication of their synrift sediments and basement are being uplifted and exhumed. High velocity anomaly linked to the Northern Taiwan Conductor below Hsuehshan Range. Datong Bright Spot (DBS) reflector at ~20 km depth within ~61Km to 85Km of distance, can be linked to ultramafic intrusion. High velocity anomaly below Central Range represent the Tanano Schist outcrop presumably consisted of ultramafic rocks and marble. Due to the limitation of data aperture, Moho discontinuity is not resolved.
關鍵字(中) ★ 波形逆推
★ Wave-Equation Datuming
★ 走時逆推
★ TAIGER
關鍵字(英) ★ Wavefield Inversion
★ Wave-Equation Datuming
★ Travel Time Inversion
★ TAIGER Project
論文目次 Chinese Abstract i
Abstract iii
Acknowledgements v
Table of Contents vi
List of Figures viii
List of Tables xv
Chapter 1 Introduction 1
1.1 Wide Angle Refraction/Reflection on Deep Structure Profiling 1
1.2 Overview of TAIGER Project 2
1.3 Geotectonic Setting of Northern Taiwan 2
1.4 Previous Studies 4
1.5 Objectives of This Study 5
1.6 Overall Thesis Arrangement 6
Chapter 2 TAIGER T6 Transect Data and Data Pre-Processing 18
2.1 Survey Geometry and Site Classification of TAIGER T6 Transect Data 18
2.2 Overview of Raw Data 19
2.3 Data Pre-Processing 25
2.3.1 Deconvolution 26
2.3.2 Frequency Filtering 28
2.3.3 Localized Slant Stack Transformation (LSST) and Wavefield Processing 29
Chapter 3 Tau-P Wavefield Inversion and Wave-Equation Datuming - Theory and Synthetic Verification 59
3.1 Wavefield Transformation 59
3.2 Wavefield Continuation Inversion (Downward Continuation) 63
3.3 Near-surface Statics Effects and Wave Equation Datuming 66
3.4 Synthetic Verification on Tau-P Wavefield Inversion 68
3.5 Application of Wave Equation Datuming on Synthetic Data 75
Chapter 4 Application of Tau-P Wavefield Inversion and Wave-Equation Datuming 105
4.1 Tau-p Wavefield Inversion of TAIGER T6 Data 105
4.2 Construct 2D Vp Model from the Inverted Offset-Dependent 1D Vp Models 115
4.3 Wave-Equation Datuming of TAIGER T6 Data 118
4.4 Travel Time Inversion 124
4.5 Comparison with Currently Available Velocity Models 126
4.6 Depth Imaging Inferred from TAIGER T6 Array Data 128
Chapter 5 Discussions and Conclusions 215
5.1 Discussions 215
5.2 Conclusions 225
5.3 Limitations of this Study and Suggestion for Future Work 227
參考文獻 Chowdhury K.R. (2011) Deep Seismic Reflection and Refraction Profiling. In: Gupta H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht
Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1–3), 1–16. https://doi.org/10.1016/0040-1951(86)90004-1
Ho ,C.S. (1988). An Introduction to the Geology of Taiwan, 2nd edn. Explanatory text of the geologic map of Taiwan. Ministry of Economic Affairs, Taipei.
Huang, C. Y., Yuan, P. B., & Tsao, S. J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Bulletin of the Geological Society of America, 118(3–4), 274–288. https://doi.org/10.1130/B25527.1
Huang, H. H., Shyu, J. B. H., Wu, Y. M., Chang, C. H., & Chen, Y. G. (2012). Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension. Journal of Geophysical Research: Solid Earth, 117(1), 1–13. https://doi.org/10.1029/2011JB008852
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(6), 1–19. https://doi.org/10.1029/2011JB009108
Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453–478. https://doi.org/10.1046/j.1365-2117.2003.00215.x
Lin, C. H. (2002). Active continental subduction and crustal exhumation: The Taiwan orogeny. Terra Nova, 14(4), 281–287. https://doi.org/10.1046/j.1365-3121.2002.00421.x
Roma Widiyansari. (2018). Master Thesis: Body- and Surface-waves Wavefield Inversion in Southern Taiwan: Application to TAIGER T4b Wide Angel Refraction/Reflection Data. National Central University.
Simoes, M., & Avouac, J. P. (2006). Investigation the kinematics of mountain building in Taiwan from the spatiotemporal evolution of the foreland basin and western foothills. Journal of Geophysical Research: Solid Earth, 111(10), 1–25. https://doi.org/10.1029/2005JB004209
Simoes, M., Avouac, J. P., Beyssac, O., Goffé, B., Farley, K. A., & Chen, Y. G. (2007). Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research: Solid Earth, 112(11), 1–25. https://doi.org/10.1029/2006JB004824
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1–4), 57–76. https://doi.org/10.1016/0040-1951(90)90188-E
Tsai,Y.B.,Ten,T.L.,Chiu,J.M. and Liu, H.L., (1977). Tectonics implications of the seismicity in the Taiwan region. Mem. Geol. Soc. China, 2,13–41.
Van Avendonk, H. J. A., McIntosh, K. D., Kuo-Chen, H., Lavier, L. L., Okaya, D. A., Wu, F. T., … Liu, C. S. (2016). A lithospheric profile across northern Taiwan: From arc-continent collision to extension. Geophysical Journal International, 204(1), 331–346. https://doi.org/10.1093/gji/ggv468
White, R. S. (2012). Wide-angle refraction and reflection. In Regional Geology and Tectonics. https://doi.org/10.1016/B978-0-444-53042-4.00011-X
Willett, S. D., & Brandon, M. T. (2002). Willett and Brandon, 2002. On steady states in mountain belts.pdf. Geology, 30(2), 175–178. https://doi.org/10.1130/0091-7613(2002)030<0175
Wu, F. T., Kuo-Chen, H., & McIntosh, K. D. (2014). Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. Journal of Asian Earth Sciences, 90, 173–208. https://doi.org/10.1016/j.jseaes.2014.03.024
Brown, L. D., Krumhansl, P. A., Chapin, C. E., Sanford, A. R., Cook, F. A., Kaufman, S., … Schilt, F. S. (1979). Cocorp Seismic Reflection Studies of the Rio Grande Rift. 14, 169–184. https://doi.org/10.1029/sp014p0169
Brown, L. D., Zhao, W., Nelson, K. D., Hauck, M., Alsdorf, D., Ross, A., … Che, J. (1996). Bright Spots, Structure,. 274(December).
Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional-wave in elastic silicate. Geophysics, 50(4), 571–581. https://doi.org/10.1190/1.1441933
Diego Alonso. (2017). PhD Dissertation: Seismic Reflection Imaging with Conventional and Unconventional Sources. Cornell University.
Huang, B. S., Wang, C. Y., Okaya, D., Lee, S. J., Lai, Y. C., Wu, F. T., … Huang, W. G. (2013). Multiple diving waves and steep velocity gradients in the Western Taiwan coastal plain: An investigation based on the TAIGER experiment. Bulletin of the Seismological Society of America, 103(2 A), 925–935. https://doi.org/10.1785/0120110047
Jarchow, C. M., Thompson, G. A., Catchings, R. D., & Mooney, W. D. (1993). Seismic evidence for active magmatic underplating beneath the Basin and Range Province, western United States. Journal of Geophysical Research, 98(B12). https://doi.org/10.1029/93jb02021
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(6), 1–19. https://doi.org/10.1029/2011JB009108
Lee, C. T., Cheng, C. T., Liao, C. W., & Tsai, Y. Ben. (2001). Site classification of Taiwan free-field strong-motion stations. Bulletin of the Seismological Society of America, 91(5), 1283–1297. https://doi.org/10.1785/0120000736
Lee, C. T., & Tsai, B. R. (2008). Mapping Vs30 in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 671–682. https://doi.org/10.3319/TAO.2008.19.6.671(PT)
Leinbach, J. (1995). Wiener spiking deconvolution and minimum‐phase wavelets: A tutorial. The Leading Edge, 14(3), 189–192. https://doi.org/10.1190/1.1437110
Brown, L. D., Krumhansl, P. A., Chapin, C. E., Sanford, A. R., Cook, F. A., Kaufman, S., … Schilt, F. S. (1979). Cocorp Seismic Reflection Studies of the Rio Grande Rift. 14, 169–184. https://doi.org/10.1029/sp014p0169
Brown, L. D., Zhao, W., Nelson, K. D., Hauck, M., Alsdorf, D., Ross, A., … Che, J. (1996). Bright Spots, Structure,. 274(December).
Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional-wave in elastic silicate. Geophysics, 50(4), 571–581. https://doi.org/10.1190/1.1441933
Diego Alonso. (2017). PhD Dissertation: Seismic Reflection Imaging with Conventional and Unconventional Sources. Cornell University.
Huang, B. S., Wang, C. Y., Okaya, D., Lee, S. J., Lai, Y. C., Wu, F. T., … Huang, W. G. (2013). Multiple diving waves and steep velocity gradients in the Western Taiwan coastal plain: An investigation based on the TAIGER experiment. Bulletin of the Seismological Society of America, 103(2 A), 925–935. https://doi.org/10.1785/0120110047
Jarchow, C. M., Thompson, G. A., Catchings, R. D., & Mooney, W. D. (1993). Seismic evidence for active magmatic underplating beneath the Basin and Range Province, western United States. Journal of Geophysical Research, 98(B12). https://doi.org/10.1029/93jb02021
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(6), 1–19. https://doi.org/10.1029/2011JB009108
Lee, C. T., Cheng, C. T., Liao, C. W., & Tsai, Y. Ben. (2001). Site classification of Taiwan free-field strong-motion stations. Bulletin of the Seismological Society of America, 91(5), 1283–1297. https://doi.org/10.1785/0120000736
Lee, C. T., & Tsai, B. R. (2008). Mapping Vs30 in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 671–682. https://doi.org/10.3319/TAO.2008.19.6.671(PT)
Leinbach, J. (1995). Wiener spiking deconvolution and minimum‐phase wavelets: A tutorial. The Leading Edge, 14(3), 189–192. https://doi.org/10.1190/1.1437110
Lin, Y. P., Zhao, L., & Hung, S. H. (2011). Assessment of tomography models of Taiwan using first-arrival times from the TAIGER active-source experiment. Bulletin of the Seismological Society of America, 101(2), 866–880. https://doi.org/10.1785/0120100244
Spitz, S. (1991). Seismic trace interpolation in the f-x domain. Geophysics, 56(6), 785–794. https://doi.org/10.1190/1.1443096
Ventosa, S., Simon, C., & Schimmel, M. (2012). Window length selection for optimum slowness resolution of the local-slant-stack transform. Geophysics, 77(2). https://doi.org/10.1190/geo2010-0326.1
Barison, E., Brancatelli, G., Nicolich, R., Accaino, F., Giustiniani, M., & Tinivella, U. (2011). Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling. Journal of Applied Geophysics, 73(3), 267–277.https://doi.org/10.1016/j.jappgeo.2011.01.009.
Berryhill, J. R. (1979). Wave Equation Datuming. GEOPHYSICS. 44(August).
Berryhill, J. R. (1984). Short Note datuming before stack. Geophysics, 49(Ii), 2064–2066.
Binzhong Zhou, and Greenhalgh, S. A. (1994). Linear and parabolic τ-p transforms revisited. Geophysics, 59(7), 1133–1149. https://doi.org/10.1190/1.1443669.
Claerbout, J. F. (1976). Fundamentals of geophysical data processing. New York. McGraw Hill Book Co. Inc. Chapter 10,11.
Black J. L. and Claerbout, J. F. (1976). Basic Earth Imaging. Stanford Exploration Project.
Clayton, R. W., and McMechan, G. A. (1981). Inversion of refraction data by wave field continuation. Geophysics, 46(6), 860–868. https://doi.org/10.1190/1.1441224.
Dunne, J., and Beresford, G. (1997). Processing through to stack in the t-p domain. Exploration Geophysics, 28(3), 341–347. https://doi.org/10.1071/EG997341.
Gazdag, J. (1978). Wave Equation Migration With the Phase-Shift Method. Geophysics, 43(7), 1342–1351. https://doi.org/10.1190/1.1440899.
Gorman, A. R. and Clowes, R. M., 1999, Wave-field Tau- p analysis for 2-D velocity models: Application to western North American Lithosphere, Geophysical Research Letters, Vol. 26, No. 15, Pages 2323-2326, August 1, 1999, Canada.
McMechan, G. A. and Ottolini, R., 1980, Direct observation of p-τ curve in a slant stacked wave field, Bull. Seism. Soc. Am., 70, 775-789.
Sarajaervi, M., 2010. Inversion of the Linear and Parabolic Radon Transform, Master Thesis, University of Bergen, 133 pp.
Schonewille, M. A., & Duijndam, A. J. W. (2001). Parabolic radon transform, sampling and efficiency. Geophysics, 66(2), 667–678. https://doi.org/10.1190/1.1444957.
Trad, D., Sacchi, M. D., and Ulrych, T. J. (2001). A hybrid linear-hyperbolic radon transform. Journal of Seismic Exploration, 9(4), 303–318.
Tromp, J., Komatitsch, D., and Liu, Q. (2008). Spectral-element and adjoint methods in seismology. Communications in Computational Physics, 3(1), 1–32.
Yilmaz, O., 1989. Velocity-Stack Processing, Geophysical Prospecting 37,357-382, 1989.
Bertrand, E. A., Unsworth, M. J., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F. T., … Hill, G. J. (2012). Magnetotelluric imaging beneath the Taiwan orogen: An arc-continent collision. Journal of Geophysical Research: Solid Earth, 117(1). https://doi.org/10.1029/2011JB008688
Diego Alonso. (2017). PhD Dissertation: Seismic Reflection Imaging with Conventional and Unconventional Sources. Cornell University.
Gorman, A. R. and Clowes, R. M., 1999. Wave-field Tau- p analysis for 2-D velocity models: Application to western North American Lithosphere, Geophysical Research Letters, Vol. 26, No. 15, Pages 2323-2326, August 1, 1999, Canada.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(6), 1–19. https://doi.org/10.1029/2011JB009108
Van Avendonk, H. J. A., McIntosh, K. D., Kuo-Chen, H., Lavier, L. L., Okaya, D. A., Wu, F. T., … Liu, C. S. (2016). A lithospheric profile across northern Taiwan: From arc-continent collision to extension. Geophysical Journal International, 204(1), 331–346. https://doi.org/10.1093/gji/ggv468
W.D. Mooney, C. Prodehl, N.I. Pavlenkova, 2002. Seismic velocity structure of the continental lithosphere from controlled source data. International Handbook of Earthquake and Engineering Seismology, vol. 81A (2002), pp. 887-910
Bertrand, E. A., Unsworth, M. J., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F. T., … Hill, G. J. (2012). Magnetotelluric imaging beneath the Taiwan orogen: An arc-continent collision. Journal of Geophysical Research: Solid Earth, 117(1). https://doi.org/10.1029/2011JB008688
Brown, D., Alvarez-Marron, J., Schimmel, M., Wu, Y. M., & Camanni, G. (2012). The structure and kinematics of the central Taiwan mountain belt derived from geological and seismicity data. Tectonics, 31(5). https://doi.org/10.1029/2012TC003156
Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: a global view. Journal of Geophysical Research, 100(B6), 9761–9788. https://doi.org/10.1029/95JB00259
Diego Alonso. (2017). PhD Dissertation: Seismic Reflection Imaging with Conventional and Unconventional Sources. Cornell University.
Gorman, A. R. and Clowes, R. M., 1999. Wave-field Tau- p analysis for 2-D velocity models: Application to western North American Lithosphere, Geophysical Research Letters, Vol. 26, No. 15, Pages 2323-2326, August 1, 1999, Canada.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(6), 1–19. https://doi.org/10.1029/2011JB009108
Roma Widiyansari. (2018). Master Thesis: Body- and Surface-waves Wavefield Inversion in Southern Taiwan: Application to TAIGER T4b Wide Angel Refraction/Reflection Data. National Central University.
Van Avendonk, H. J. A., McIntosh, K. D., Kuo-Chen, H., Lavier, L. L., Okaya, D. A., Wu, F. T., … Liu, C. S. (2016). A lithospheric profile across northern Taiwan: From arc-continent collision to extension. Geophysical Journal International, 204(1), 331–346. https://doi.org/10.1093/gji/ggv468
Ventosa, S., Simon, C., & Schimmel, M. (2012). Window length selection for optimum slowness resolution of the local-slant-stack transform. Geophysics, 77(2). https://doi.org/10.1190/geo2010-0326.1
W.D. Mooney, C. Prodehl, N.I. Pavlenkova, 2002. Seismic velocity structure of the continental lithosphere from controlled source data. International Handbook of Earthquake and Engineering Seismology, vol. 81A (2002), pp. 887-910
指導教授 陳浩維(How-Wei Chen) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明