博碩士論文 107329018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.133.133.178
姓名 林萱(Shuan Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 銅添加及氫化物形成於鈀銅雙金屬觸媒析氫反應效能影響之研究
(The Effect of Cu Addition and Hydride Formation on the Hydrogen Evolution Reaction Performance of PdCu Bimetallic Catalysts)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來由於嚴重的碳排放與工業汙染,發展替代性的再生能源受到相當重視。氫氣為一有潛力之再生能源,因其燃燒過程可產生高能量且無二氧化碳排放。氫氣可由電化學水分解產生 (hydrogen evolution reaction, HER),然而需要有效的催化劑以最小過電位來提高HER的活性。貴金屬由於其極佳之催化活性被認為是酸性條件下的最佳材料,但其效能及穩定性仍有待提升並克服。
本研究分成兩個部分,第一部分透過結構設計,以油胺法合成氫化鈀 (palladium hydride, PdH) 並以X光繞射儀 (X-ray diffraction, XRD)證明其結構,氫化鈀與商用鈀和鉑觸媒相比在HER反應中具有最小的過電位 (27 mV (vs. RHE)),且有與鉑相同的塔佛斜率 (23 mV dec-1),經過5000圈的穩定性測試,PdH展現最佳的穩定性,和最少的電化學活性面積(electrochemical active surface area, ECSA) 損失 (0.7 %),穩定度測試後之過電位 (39 mV (vs. RHE)) 和塔佛斜率 (29 mV dec-1) 都最小,並具有最高的質量活性 (mass activity, MA) (144A gPd-1) 。
第二部分則是以油胺還原出不同比例的鈀銅觸媒 (Pd5Cu1, Pd3Cu1, Pd1Cu2及Pd1Cu9),透過第二金屬銅添加以及氫化物的形成改善反應過程中氫原子的吸脫附能力並提升穩定性,利用X光繞射儀證明鈀銅合金化的形成及X光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 的結果證明適量的銅添加減少表面鈀的氧化,其中Pd5Cu1在表面具有最高的金屬態 (Pd0 84 % 和Cu0 69 %)。在HER反應中Pd5Cu1展現與PdH相近的過電位 (28mV (vs. RHE)) 和塔佛斜率 (23mV dec-1),此外經過5000圈穩定性測試,Pd5Cu1展現最優異的效能和穩定性,呈現最小的過電位 (31 mV (vs. RHE)) 和塔佛斜率 (23 mV dec-1) 以及最高的ECSA (298 m2 g-1) 和 MA (406 A g Pd-1) 為PdH的1.3倍。本研究揭示了氫化鈀的形成可提升析氫反應之效能,並且透過適量的銅添加可經由電子修飾效應在析氫反應中具有更卓越的活性和穩定性。更重要的是,這項研究也為優化鈀銅觸媒的析氫反應提供新的見解,即結合結構設計和電子修飾,為開發高效和穩定的電催化劑之可行的方法。
摘要(英) Due to severe carbon emission and industrial pollution in recent years, development of an alternative renewable energy has received much attention. Hydrogen is one of the most important renewable energy because its combustion process can produce high energy without carbon dioxide emissions. Hydrogen can be produced through electrochemical water splitting (hydrogen evolution reaction, HER) provides an effective way to store energy in the form of chemical energy. However, an effective catalyst is required to increase the activity of HER with a minimum overpotential. Due to the high catalytic activity, precious metals are considered to be the best materials under acidic conditions, but the performance and stability still needs to be improved and overcome
This study is divided into two parts. In the first part, through structural-design, palladium hydride (PdH) is synthesized by oleylamine method and its structure is proved by X-ray diffraction (XRD). When compared with commercial Pd/C and Pt/C, the HER performance of PdH has the lowest overpotnetial at 10 mA cm-2 (27 mV (vs. RHE)) and the same Tafel slope with commercial Pt/C (23 mV dec-1). After 5000 cycles of ADT test, PdH reveals the best HER stability, the smallest ECSA decay (0.7 %), the smallest overpotential (39 mV (vs. RHE)), the smallest Tafel slope (29 mV dec-1), and the highest MA (144A gPd-1) after ADT.
In the second part, PdxCuy (Pd5Cu1, Pd3Cu1, Pd1Cu2及Pd1Cu9) are prepared by oleylamine method. Through the addition of copper and the formation of hydride, the absorption and desorption of hydrogen atoms can be ameliorated so that the stability can be improved. XRD confirms the alloy formation and the X-ray photoelectron spectroscopy (XPS) results demonstrate that with proper Cu addition, surface Pd oxidation can be retarded. Among all samples, Pd5Cu1 reveals the highest metallic state on the surface (Pd0 84 % and Cu0 69 %). During HER, the current density at 10 mA cm-2 (28 mV (vs. RHE)) and Tafel slope (23 mV dec-1) of Pd5Cu1 is similar and identical to those of PdH. Besides, Pd5Cu1 shows the best performance and stability after 5000 cycles of ADT test, with the smallest overpotential at 10 mA cm-2 (31 mV (vs. RHE)), the smallest Tafel slope (23 mV dec-1), the highest ECSA (298 m2 g-1), and the highest MA (406 A g Pd-1) which is 1.3 times higher than that of PdH catalyst. This study reveals that the hydride formation can enhance the HER performance and with proper Cu addition, both HER activity and stability can be improved through electronic modification. More importantly, this work also provides new insight for the HER performance optimization of PdCu catalysts, in which the combination of structural design and electronic modification can offer a feasible approach to develop the highly effective and stable electrocatalysts.
關鍵字(中) ★ 氫化鈀
★ 鈀銅奈米觸媒
★ 析氫反應
★ 穩定性
★ 質量活性
★ 過電位
★ 塔佛斜率
關鍵字(英) ★ palladium hydride (PdH)
★ PdCu nanocatalysts
★ hydrogen evolution reaction (HER)
★ stability
★ mass activity (MA)
★ overpotential
★ Tafel slope
論文目次 Table of Contents
摘要 .......................................................................................................... i
Abstract ................................................................................................. iii
致謝 ......................................................................................................... v
Table of Contents ................................................................................... ix
List of Figures ........................................................................................ xi
List of Tables ........................................................................................xiii
Chapter 1 Introduction ........................................................................... 1
1.1 The Mechanism and Catalysts of HER ..................................... 2
1.2 The HER Performance of Palladium Hydride ........................... 5
1.3 Bimetallic Electrocatalysts for HER ......................................... 7
1.4 Motivation and Approach ......................................................... 9
Chapter 2 Experimental Section ........................................................... 10
2.1 Preparation of Catalysts.......................................................... 10
2.1.1 Preparation of carbon-supported PdH NPs .................... 10
2.1.2 Preparation of carbon-supported PdCu NPs ................... 10
2.2 Characterization of Catalysts .................................................. 13
2.2.1 Inductively coupled plasma optical emission spectroscopy
(ICP-OES).............................................................................. 13
2.2.2 High resolution transmission electron microscopy
(HRTEM) ............................................................................... 13
2.2.3 X-ray diffraction (XRD) ............................................... 13
2.2.4 X-ray photoelectron spectroscopy (XPS)...................... 15
2.3 HER Performance of Catalysts ............................................... 16
2.3.1 Linear sweep voltammetry (LSV) measurements ......... 16
2.3.2 Electrochemical active surface area (ECSA)
measurements......................................................................... 16
2.3.3 Accelerated degradation test (ADT) measurements ...... 17
Chapter 3 Results and Discussion......................................................... 18
3.1 The Structural and Electrochemical Characterizations of PdH
and Pd Catalysts ........................................................................... 18
3.1.1 HRTEM characterization ............................................... 18
3.1.2 XRD characterization .................................................... 18
3.1.3 XPS characterization ..................................................... 18
3.1.4 Electrocatalytic performance ......................................... 21
3.1.5 Summary ....................................................................... 25
3.2 The Structural and Electrochemical Characterizations of PdxCuy
Catalysts ...................................................................................... 28
3.2.1 ICP and HRTEM characterizations ................................ 28
3.2.2 XRD characterization .................................................... 28
3.2.3 XPS characterization ..................................................... 33
3.2.4 HER performance of PdxCuy ......................................... 36
3.2.5 Summary ....................................................................... 41
Chapter 4 Conclusions .......................................................................... 43
References ............................................................................................. 45



List of Figures
Figure 1.1 Volcano plot of exchange current density (j0) as a function of
DFT-calculated Gibbs free energy (∆GH ∗) of adsorbed atomic
H on pure metals [21]. .............................................................. 4
Figure 1.2 The free energy change (∆G) of HER calculated by DFT for
different Pd [29]. ...................................................................... 6
Figure 1.3 Comparison the LSV results of PdCu@Pd and commercial Pt
catalysts at first and 5000th cycle [59]. ..................................... 8
Figure 2.1 Schematic diagram for the preparation of carbon-supported PdH
NPs. ....................................................................................... 11
Figure 2.2 Schematic diagram for the preparation of carbon-supported
PdxCuy NPs with different ratios. ........................................... 12
Figure 2.3 The characterization process for the catalysts. ....................... 14
Figure 3.1 HRTEM micrographs of (a) PdH, (b) commercial Pd/C, and (c)
commercial Pt/C. The particle size distributions of (d) PdH, (e)
commercial Pd/C, and (f) commercial Pt/C catalysts are also
shown. .................................................................................... 19
Figure 3.2 XRD patterns of commercial Pd/C, PdH, and standard Pd and
PdH0.64 patterns from ICSD. ................................................... 20
Figure 3.3 XPS spectra of Pd 3d for PdH and commercial Pd/C. ........... 22
Figure 3.4 (a) CV, (b) LSV, (c) Tafel plots, and (d) MA of PdH, commercial
Pd/C and Pt/C in 0.5 M H2SO4. .............................................. 24
Figure 3.5 CV and LSV curves for (a) and (d) PdH, (b) and (e) commercial
Pd/C, and (c) and (f) commercial Pt/C, respectively before and
after 5000 cycles in 0.5 M H2SO4. .......................................... 26
Figure 3.6 HRTEM micrographs of (a) PdH, (b) Pd5Cu1, (c) Pd3Cu1, (d)
Pd1Cu2 and (e) Pd1Cu9 catalysts. The particle size distributions
of (f) PdH, (g) Pd5Cu1, (h) Pd3Cu1, (i) Pd1Cu2 and (j) Pd1Cu9
catalysts are also shown. ........................................................ 31
Figure 3.7 XRD patterns of PdH, Pd5Cu1, Pd3Cu1, Pd1Cu2, Pd1Cu9 and
standard PdH0.64, Cu and CuO patterns from ICSD. ............... 32
Figure 3.8 (a) XPS spectra of Pd 3d for PdH, Pd5Cu1, Pd3Cu1, Pd1Cu2 and
Pd1Cu9 and (b) Cu 2p for Pd5Cu1, Pd3Cu1, Pd1Cu2 and Pd1Cu9
............................................................................................... 35
Figure 3.9 (a) CV, (b) LSV, (c) Tafel plots, and (d) MA of PdH, Pd5Cu1,
Pd3Cu1, Pd1Cu2 and Pd1Cu9 in 0.5 M H2SO4. ......................... 37
Figure 3.10 CV and LSV curves for (a) and (d) PdH, (b) and (e) Pd5Cu1,
and (c) and (f) Pd3Cu1, respectively before and after 5000 cycles
in 0.5 M H2SO4. ..................................................................... 40


List of Tables
Table 3.1 The XPS characterization and comparison of HER performance
of PdH, commercial Pd/C and Pt/C. ....................................... 23
Table 3.2 ICP-OES results and grain size calculation of PdH, Pd5Cu1,
Pd3Cu1, Pd1Cu2, and Pd1Cu9. .................................................. 29
Table 3.3 XPS characterization of PdH, Pd5Cu1, Pd3Cu1, Pd1Cu2 and
Pd1Cu9. ................................................................................... 34
Table 3.4 The comparison of electrocatalytic performance for PdH, Pd5Cu1,
Pd3Cu1, Pd1Cu2 and Pd1Cu9. ................................................... 38
Table 3.5 Comparison of HER performance among all PdCu catalysts in
this study and from literatures. ............................................... 42

參考文獻 References
1. S. Sarkar and S. C. Peter, Inorg. Chem. Front., 2018, 5, 2060-2080.
2. I. A. Gondal, S. A. Masood and R. Khan, Int. J. Hydrog. Energy, 2018,
43, 6011-6039.
3. B. Nykvist and M. Nilsson, Nat. Clim. Chang., 2015, 5, 329-332.
4. J. Trop and D. Cardwell, New York Times, 2014.
5. R. J. Farrauto, M. Deeba and S. Alerasool, Nat. Catal., 2019, 2, 603-
613.
6. T. Sinigaglia, T. E. Freitag, F. Kreimeier and M. E. S. Martins, World
Pat. Inf., 2019, 56, 1-8.
7. M. Balat, Int. J. Hydrog. Energy, 2008, 33, 4013-4029.
8. M. Wang, Z. Wang, X. Gong and Z. Guo, Renew. Sust. Energ. Rev.,
2014, 29, 573-588.
9. X. Zou and Y. Zhang, Chem. Soc. Rev., 2015, 44, 5148-5180.
10. B. H. Suryanto, Y. Wang, R. K. Hocking, W. Adamson and C. Zhao,
Nat. Commun., 2019, 10, 1-10.
11. F. A. Garcés-Pineda, M. Blasco-Ahicart, D. Nieto-Castro, N. López
and J. R. Galán-Mascarós, Nat. Energy, 2019, 4, 519-525.
12. B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-
Melchor, L. Han, J. Xu, M. Liu and L. Zheng, Science, 2016, 352, 333-
337.
13. N. Dubouis and A. Grimaud, Chem. Sci., 2019, 10, 9165-9181.
14. X. Li, X. Hao, A. Abudula and G. Guan, J. Mater. Chem. A, 2016, 4,




46



11973-12000.
15. Y. Li, J. Wang, X. Tian, L. Ma, C. Dai, C. Yang and Z. Zhou, Nanoscale,
2016, 8, 1676-1683.
16. J. Theerthagiri, S. J. Lee, A. P. Murthy, J. Madhavan and M. Y. Choi,
Curr. Opin. Solid State Mater. Sci., 2020, 100805.
17. J. Juodkazytė, K. Juodkazis, I. Matulaitienė, B. Šebeka, I. Savickaja, A.
Balčytis, Y. Nishijima, G. Niaura and S. Juodkazis, Appl. Sci., 2019, 9,
5301.
18. X. Wang, Y. Zheng, W. Sheng, Z. J. Xu, M. Jaroniec and S. Z. Qiao,
Mater. Today, 2020.
19. J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff and J. K. Nørskov,
Nat. Mater., 2006, 5, 909-913.
20. M. Zeng and Y. Li, J. Mate.r Chem. A, 2015, 3, 14942-14962.
21. J. K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. G. Chen, S.
Pandelov and U. Stimming, J. Electrochem. Soc., 2005, 152, 23-26.
22. Y. Li, S. Chen, R. Long, H. Ju, Z. Wang, X. Yu, F. Gao, Z. Cai, C. Wang
and Q. Xu, Nano Energy, 2017, 34, 306-312.
23. G. Wang, J. Liu, Y. Sui, M. Wang, L. Qiao, F. Du and B. Zou, J. Mater.
Chem. A., 2019, 7, 14876-14881.
24. J. D. Benck, A. Jackson, D. Young, D. Rettenwander and Y. M. Chiang,
Chem. Mater., 2019, 31, 4234-4245.
25. B. D. Adams and A. Chen, Mater. Today, 2011, 14, 282-289.
26. M. Dresselhaus and I. Thomas, Nature, 2001, 414, 332-337.
27. X. Yang, H. Li, R. Ahuja, T. Kang and W. Luo, Sci. Rep., 2017, 7, 3520.




47



28. J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee and K. Y. Wong, Chem. Rev., 2019.
29. W. Sheng, S. Kattel, S. Yao, B. Yan, Z. Liang, C. J. Hawxhurst, Q. Wu
and J. G. Chen, Energy Environ. Sci., 2017, 10, 1180-1185.
30. W. Xu, G. Fan, J. Chen, J. Li, L. Zhang, S. Zhu, X. Su, F. Cheng and J.
Chen, Angew. Chem., 2020, 132, 3539-3544.
31. S. F. Parker, H. C. Walker, S. K. Callear, E. Grünewald, T. Petzold, D.
Wolf, K. Möbus, J. Adam, S. D. Wieland and M. Jiménez-Ruiz, Chem.
Sci., 2019, 10, 480-489.
32. M. Blanco-Rey, J. Juaristi, R. D. Muiño, H. F. Busnengo, G.-J. Kroes
and M. Alducin, Phys. Rev. Lett., 2014, 112, 103203.
33. Y. Dai, X. Mu, Y. Tan, K. Lin, Z. Yang, N. Zheng and G. Fu, J. Am.
Chem. Soc., 2012, 134, 7073-7080.
34. G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton,
A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos and E. C. H.
Sykes, Science, 2012, 335, 1209-1212.
35. B. Şen, A. Aygün, A. Şavk, M. H. Çalımlı, S. K. Gülbay and F. Şen, Int.
J. Hydrog. Energy, 2020, 45, 3569-3576.
36. J. Li, P. Zhou, F. Li, J. Ma, Y. Liu, X. Zhang, H. Huo, J. Jin and J. Ma,
J. Power Sources, 2016, 302, 343-351.
37. X. Zhang, D. Wu and D. Cheng, Electrochim. Acta, 2017, 246, 572-
579.
38. M. Y. Zu, P. F. Liu, C. Wang, Y. Wang, L. R. Zheng, B. Zhang, H. Zhao
and H. G. Yang, ACS Energy Lett., 2017, 3, 78-84.
39. F. Qin, Z. Zhao, M. K. Alam, Y. Ni, F. Robles-Hernandez, L. Yu, S.




48



Chen, Z. Ren, Z. Wang and J. Bao, ACS Energy Lett., 2018, 3, 546-
554.
40. Q. Wu, M. Luo, J. Han, W. Peng, Y. Zhao, D. Chen, M. Peng, J. Liu, F.
M. de Groot and Y. Tan, ACS Energy Lett., 2020, 5, 192–199.
41. R. Q. Yao, Y. T. Zhou, H. Shi, Q. H. Zhang, L. Gu, Z. Wen, X. Y. Lang
and Q. Jiang, ACS Energy Lett., 2019, 4, 1379-1386.
42. G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen and
X. Feng, Adv. Mater., 2018, 30, 1706279.
43. M. Zhao, Y. Wu, W. Cai, T. Xia, W. J. Jiang, W. Ding and J. P. Cao, Int.
J. Hydrog. Energy, 2019, 44, 31053-31061.
44. C. Wang, H. Xu, H. Shang, L. Jin, C. Chen, Y. Wang, M. Yuan and Y.
Du, Inorg. Chem., 2020, 59, 3321–3329.
45. J. Fan, X. Cui, S. Yu, L. Gu, Q. Zhang, F. Meng, Z. Peng, L. Ma, J.-Y.
Ma and K. Qi, ACS Nano, 2019, 13, 12987-12995.
46. S. C. Lim, C. Y. Chan, K. T. Chen and H. Y. Tuan, Nanoscale, 2019,
11, 8518-8527.
47. M. Farsadrooh, M. Noroozifar, A. R. Modarresi-Alam and H. Saravani,
Ultrason. Sonochem., 2019, 51, 478-486.
48. J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C. Wei and Z. J. Xu,
Nanomicro. Lett., 2018, 10, 75.
49. Z. Liu, H. Tan, J. Xin, J. Duan, X. Su, P. Hao, J. Xie, J. Zhan, J. Zhang,
J. J. Wang and H. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 3699-
3706.
50. Y. Qiu, L. Xin, Y. Li, I. T. McCrum, F. Guo, T. Ma, Y. Ren, Q. Liu, L.




49



Zhou, S. Gu, M. J. Janik and W. Li, J. Am. Chem. Soc., 2018, 140,
16580-16588.
51. R. Jana, A. Bhim, P. Bothra, S. K. Pati and S. C. Peter, ChemSusChem,
2016, 9, 2922-2927.
52. Z. Chen, X. Duan, W. Wei, S. Wang and B. J. Ni, J. Mater. Chem. A.,
2019, 7, 14971-15005.
53. J. S. Yoo, Z. J. Zhao, J. K. Nørskov and F. Studt, ACS Catal., 2015, 5,
6579-6586.
54. P. Yu, F. Wang, T. A. Shifa, X. Zhan, X. Lou, F. Xia and J. He, Nano
Energy, 2019, 58, 244-276.
55. R. Zhang, Z. Sun, R. Feng, Z. Lin, H. Liu, M. Li, Y. Yang, R. Shi, W.
Zhang and Q. Chen, ACS Appl. Mater. Interfaces, 2017, 9, 38419-
38427.
56. W. Xu, S. Zhu, Y. Liang, Z. Cui, X. Yang, A. Inoue and H. Wang, J.
Mater. Chem. A, 2017, 5, 18793-18800.
57. M. Li, M. Luo, Z. Xia, Y. Yang, Y. Huang, D. Wu, Y. Sun, C. Li, Y.
Chao, W. Yang, W. Yang, Y. Yu and S. Guo, J. Mater. Chem. A, 2019,
7, 20151-20157.
58. Y. Pan, K. Sun, Y. Lin, X. Cao, Y. Cheng, S. Liu, L. Zeng, W.-C.
Cheong, D. Zhao and K. Wu, Nano Energy, 2019, 56, 411-419.
59. J. Li, F. Li, S. X. Guo, J. Zhang and J. Ma, ACS Appl. Mater. Interfaces,
2017, 9, 8151-8160.
60. N. Du, C. Wang, X. Wang, Y. Lin, J. Jiang and Y. Xiong, Adv. Mater.,
2016, 28, 2077-2084.




50



61. M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R.
Silva, X. Zou, R. Zboril and R. S. Varma, Chem. Rev., 2016, 116, 3722-
3811.
62. S. Rej, C. F. Hsia, T. Y. Chen, F. C. Lin, J. S. Huang and M. H. Huang,
Angew. Chem. Int. Ed., 2016, 55, 7222-7226.
63. Y. Zheng, S. Zhao, S. Liu, H. Yin, Y. Y. Chen, J. Bao, M. Han and Z.
Dai, ACS Appl. Mater. Interfaces, 2015, 7, 5347-5357.
64. D. Chen, P. Sun, H. Liu and J. Yang, J. Mater. Chem. A., 2017, 5, 4421-
4429.
65. R. Wang, L. Y. Jiang, J. J. Feng, W. D. Liu, J. Yuan and A. J. Wang, Int.
J. Hydrog. Energy., 2017, 42, 6695-6704.
66. T. Bhowmik, M. K. Kundu and S. Barman, ACS Catal., 2016, 6, 1929-
1941.
67. T. H. Phan and R. E. Schaak, Chem. Commun., 2009, 21, 3026-3028.
68. S. T. Nguyen, H. M. Law, H. T. Nguyen, N. Kristian, S. Wang, S. H.
Chan and X. Wang, Appl. Catal. B, 2009, 91, 507-515.
69. T. Schmidt, H. Gasteiger, G. Stäb, P. Urban, D. Kolb and R. Behm, J.
Electrochem. Soc., 1998, 145, 2354-2358.
70. D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee
and S. O. Kim, Nano Lett., 2014, 14, 1228-1233.
71. D. Briggs, Handbook of X‐ray Photoelectron Spectroscopy CD Wanger,
WM Riggs, LE Davis, JF Moulder and GE Muilenberg Perkin‐Elmer
Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA,
1979. 190-195.




51



72. J. Xue, G. Han, W. Ye, Y. Sang, H. Li, P. Guo and X. S. Zhao, ACS
Appl. Mater. Interfaces, 2016, 8, 34497-34505.
73. Y. Cong, I. T. McCrum, X. Gao, Y. Lv, S. Miao, Z. Shao, B. Yi, H. Yu,
M. J. Janik and Y. Song, J. Mater. Chem. A., 2019, 7, 3161-3169.
74. L. Huang, J. Yang, M. Wu, Z. Shi, Z. Lin, X. Kang and S. Chen, J.
Power Sources, 2018, 398, 201-208.
75. C. H. Lee, B. Jun and S. U. Lee, RSC. Adv., 2017, 7, 27033-27039.
76. B. Lim, M. Jiang, P. H. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu and
Y. Xia, Science, 2009, 324, 1302-1305.
77. T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge, Y. Lin, G. Wu, X. Wang, Y.
Hu, Z. Zhuang, Y. Wu, X. Hong and Y. Li, Angew. Chem. Int. Ed. Engl.,
2017, 56, 16047-16051.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2020-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明