博碩士論文 107826004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.224.0.57
姓名 蔡馨怡(Xin-Yi Cai)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 透明細胞腎細胞癌質譜流式細胞儀資料分析與視覺化
(Analysis and Visualization of Clear Cell Renal Cell Carcinoma CyTOF)
相關論文
★ 細菌物種基因體中非編碼小片段核糖核酸之預測★ 從年齡動態網路探討疾病盛行率
★ 藉由比較基因表現資料研究次世代定序與晶片技術分析差異★ 啟動子甲基化與對應之基因表現微陣列資訊整合分析
★ 乾燥綜合症與非病毒型肝炎之相關因子分析★ 氣候變遷對人類疾病網路造成衝擊
★ 台北和中壢地區不孕症分佈與共病探討★ 探討台灣的門診疾病與環境空氣品質的濃度變化之相關性
★ 以地區醫院病例探討桃園之地域族群與疾病之差別★ 桃園地區之區域與疾病盛行率之關聯
★ CyTOF之生物標記篩選與分析★ 使用支持向量機預測蛋白質醣基化位置
★ 使用基因表現資料預測基因轉錄調控網路★ RNA Riboswitch搜尋系統之設計與實作
★ 人類疾病差異表現基因與調控網路之整合系統★ 利用赫伯特-黃轉換法辨識酵母菌在呼吸/還原週期中的震盪基因群
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 質譜流式細胞儀使用感應耦合電漿質譜儀技術,使能檢測的參數數目較傳統流式細胞儀大量增加,大量的數據提升了分析的難度。此研究使用R 語言套件「Cytofkit」來分析透明細胞腎細胞癌質譜流式細胞儀數據與視覺化,利用Cytofkit內的PhenoGraph 工具分析數據之後,因套件本身能輸出的圖表有格式限制且種類有限,無法進行更詳細的數據判讀。因此,使用經PhenoGraph 分析後所輸出的檔案進行更多種類的圖表設計及數據分析,以提供更多資訊判斷細胞間的差異。
本研究以熱圖、箱形圖及小提琴圖呈現質譜流式細胞儀資料,並輔以統計檢定。透過細胞標誌表現量熱圖再製,標誌標準化的熱圖、比較各組織細胞、各細胞簇及各病人細胞的箱形圖及小提琴圖設計等,加上統計檢定分析的驗證,以更容易地找出各組織中特別的細胞標誌供日後透明細胞腎細胞癌檢測為主要目的。除此之外,也藉由圖表的製作,檢測樣本數增加在PhenoGraph 分析是否穩定分群及抽樣細胞數是否足夠。
摘要(英) The technique of inductively coupled plasma mass spectrometer (ICP-MS) is introduced into CyTOF. It makes the number of parameters detected in CyTOF much more than those in flow cytometry. However, it makes it more difficult to analyze data. This study analyzes and visualizes clear cell renal cell carcinoma CyTOF by using package ‘Cytofkit’ in R. Although Cytofkit provides the function to make plots, the formats of plots are fixed and plot types are limited. It is difficult to interpret data more detailedly. Thus, we used exported files from running PhenoGraph, an analysis method in Cytofkit, to make different types of plots and do statistical analysis to provide more information for comparing cells.
This study displayed heatmaps, box plots and violin plots of CyTOF data and the statistical analysis. The main goal is to uncover special markers among different tissue cells. Plotting heatmaps, box plots and violin plots, which are designed to compare cells in different tissues, clusters and patients, makes it easier to find differences. Also, statistical analysis is made to validate the finding. Furthermore, plots are designed to test the clustering stability of PhenoGraph analysis when more samples are added and whether sample size is enough.
關鍵字(中) ★ 質譜流式細胞儀 關鍵字(英) ★ CyTOF
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgment iii
Table of Contents iv
List of figures vi
List of tables vii
Chapter 1 Introduction 1
1-1 Background 1
1-2 Related Works 2
1-3 Motivation 3
1-4 Goal 3
Chapter 2 Material and Methods 4
2-1 Material 4
2-1-1 Data source 4
2-1-2 Data processing 6
2-2 Methods 8
2-2-1 PhenoGraph 8
2-2-2 Shapiro-Wilk test 8
2-2-3 D’Agostino-Pearson test 9
2-2-4 Mann-Whitney U test 9
Chapter 3 Results 10
3-1 Comparison of cell frequency 10
3-1-1 Among clusters and tissues 10
3-1-2 Among patients 11
3-2 Comparison of expression value 16
3-2-1 Find target marker(s) by median 16
3-2-2 Among tissues, patients and clusters 19
3-3 Marker Co-Expression 26
3-4 Input Setting Examination of PhenoGraph 28
3-4-1 Sampling 28
3-4-2 Clustering stability 29
Chapter 4 Conclusion 33
Reference 34
參考文獻 1. Perfetto SP, Chattopadhyay PK, Roederer M: Seventeen-colour flow cytometry: unravelling the immune system. Nature Reviews Immunology 2004, 4(8):648-655.
2. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD: Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Analytical chemistry 2009, 81(16):6813-6822.
3. Tanner SD, Baranov VI, Ornatsky OI, Bandura DR, George TC: An introduction to mass cytometry: fundamentals and applications. Cancer immunology, immunotherapy : CII 2013, 62(5):955-965.
4. Spitzer MH, Nolan GP: Mass Cytometry: Single Cells, Many Features. Cell 2016, 165(4):780-791.
5. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK: A deep profiler′s guide to cytometry. Trends in immunology 2012, 33(7):323-332.
6. Chan J, Ng C, Hui P: A simple guide to the terminology and application of leucocyte monoclonal antibodies. Histopathology 1988, 12(5):461-480.
7. Seamer L: Flow cytometry standard (FCS) data file format. In: In Living Color. Springer; 2000: 57-61.
8. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Levenson RM, Lowe JB, Liu SD, Zhao S: Multiplexed ion beam imaging of human breast tumors. Nature medicine 2014, 20(4):436-442.
9. Di Palma S, Bodenmiller B: Unraveling cell populations in tumors by single-cell mass cytometry. Current opinion in biotechnology 2015, 31:122-129.
10. Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nature Biotechnology 2011, 29(10):886-891.
11. Amir E-aD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe′er D: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nature Biotechnology 2013, 31(6):545-552.
12. Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP: Automated identification of stratifying signatures in cellular subpopulations. Proceedings of the National Academy of Sciences 2014, 111(26):E2770.
13. Levine JH, Simonds EF, Bendall SC, Davis KL, El-ad DA, Tadmor MD, Litvin O, Fienberg HG, Jager A, Zunder ER: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 2015, 162(1):184-197.
14. Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B: The end of gating? An introduction to automated analysis of high dimensional cytometry data. European journal of immunology 2016, 46(1):34-43.
15. Kimball AK, Oko LM, Bullock BL, Nemenoff RA, van Dyk LF, Clambey ET: A beginner’s guide to analyzing and visualizing mass cytometry data. The Journal of Immunology 2018, 200(1):3-22.
16. Samusik N, Good Z, Spitzer MH, Davis KL, Nolan GP: Automated mapping of phenotype space with single-cell data. Nature methods 2016, 13(6):493-496.
17. Maaten Lvd, Hinton G: Visualizing data using t-SNE. Journal of machine learning research 2008, 9(Nov):2579-2605.
18. Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J: Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS computational biology 2016, 12(9):e1005112.
19. Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W, Pe′er D, Nolan GP, Bendall SC: Normalization of mass cytometry data with bead standards. Cytometry Part A 2013, 83(5):483-494.
20. Hartmann FJ, Bernard-Valnet R, Quériault C, Mrdjen D, Weber LM, Galli E, Krieg C, Robinson MD, Nguyen X-H, Dauvilliers Y: High-dimensional single-cell analysis reveals the immune signature of narcolepsy. Journal of Experimental Medicine 2016, 213(12):2621-2633.
21. Good Z, Borges L, Vivanco Gonzalez N, Sahaf B, Samusik N, Tibshirani R, Nolan GP, Bendall SC: Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells. Nature biotechnology 2019, 37(3):259-266.
22. Perveen K, Quach A, McPhee A, Prescott SL, Barry SC, Hii CS, Ferrante A: Validation of monoclonal anti-PKC isozyme antibodies for flow cytometry analyses in human T cell subsets and expression in cord blood T cells. Scientific reports 2019, 9(1):1-11.
指導教授 吳立青(Li-Ching Wu) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明