以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:22 、訪客IP:3.139.235.100
姓名 蕭如晴(Ju-Ching Hsiao) 查詢紙本館藏 畢業系所 系統生物與生物資訊研究所 論文名稱 透明腎臟細胞癌發生前期與組織發炎之關係研究
(Study of pre-cancerous tissue inflammation in the development of clear-cell renal cell carcinoma)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 馮·希佩爾·林道(VHL)基因是抑癌基因。 VHL 基因的缺失會導致人類透明細胞腎細胞癌(ccRCC)的發生。在先前的研究中,我們證明了腎小管細胞中剔除小鼠VHL 等位基因(Vhlh)會導致組織炎症和增生。但是ccRCC 和炎症之間的機制仍然不清楚。
另一方面,過去的研究表明他汀類藥物具有抗發炎作用。VHL 基因剔除小鼠會產生腎臟炎症的病理徵象,並可能進一步引起腎臟細胞的病理變化,例如ccRCC。因此,我們對VHL 基因剔除小鼠進行他汀類抗炎藥物注射試驗,通過已知的藥物對影響癌症的炎症機制基因治療實驗以進一步探討他汀類藥物對VHL 突變小鼠的腎臟炎症相關反應。
在這項研究中,我們也結合了顯性突變p53R172H / + 和Vhlh 基因剔除雙突變的表達,將其作為ccRCC 的新型模型。我們的結果表明,Ki-67 蛋白在p53R172H / + 和Vhlh 雙等位基因組織中具有高度表達,並且在上皮細胞中透明細胞堆積及囊泡變得明顯且增多。結果表明,p53R172H /+ 和Vhlh 雙等位基因突變可作為研究炎症誘導和ccRCC 形成機制的新小鼠模型。摘要(英) The von Hippel-Lindau (VHL) gene is a tumor suppressor gene. Loss of the VHL gene causes clear-cell renal cell carcinoma (ccRCC) in human. In previous study, we demonstrated that knockout of the mouse VHL allele (Vhlh) in the kidney tubule cells resulted in tissue inflammation and hyperplasia. However, the relationship between ccRCC and inflammation remains unclear.
In order to further test whether tissue inflammation is important for hyperplastic transformation, we examined the efficacy of statins in relieving the fibrotic and proliferative phenotypes of the Vhlh knockout kidney, since past studies have shown that statins have anti-inflammatory effects. Vhlh knockout mice produce pathological signs of kidney inflammation and may further cause changes in kidney cells that lead to ccRCC. Therefore, we performed an anti-inflammatory statin injection test on Vhlh knockout mice to examine the causal relationship between inflammation and hyperplasia. The result indicates that statin may be a potential preventive agent for blocking tumor development in inflamed tissue.
In this study, we also combined the expression of dominant-negative p53R172H/+ and Vhlh knockout mutations as a novel model of ccRCC. Our results indicated that proliferation marker Ki-67 protein is highly expressed in p53R172H/+ and Vhlh double allele tissue, and cystic and pile-up epithelia became apparent. The results suggest that p53R172H/+ and Vhlh double allele could be used as a novel model in the study of mechanism underlying inflammation-induced ccRCC formation.關鍵字(中) ★ 腎透明細胞癌
★ 發炎機制
★ 他汀類藥物關鍵字(英) ★ ccRCC
★ VHL
★ p53
★ Simvastatin論文目次 中文摘要.........................................................................................................................I
Abstract..........................................................................................................................II
致謝...............................................................................................................................III
Chapter 1 Introduction ...................................................................................................1
1-1 kidney cancer and the VHL gene .....................................................................1
1-1-1 Kidney ..................................................................................................1
1-1-2 ccRCC ..................................................................................................1
1-1-3 The function of VHL gene ....................................................................3
1-1-4 Inflammation and cancer .................................................................5
1-1-5 Anti-inflammation effect of the statin drug..........................................7
1-1-6 Vhlh and simvastatin ............................................................................8
1-1-7 p53........................................................................................................8
1-1-8 Dominant negative mutation ................................................................9
1-1-9 p53R172H/+ dominant negative mutation..............................................10
Chapter 2 Materials and Method..................................................................................12
2-1 Experimental materials..................................................................................12
2-1-1 p53 and Vhlh mutant mouse model....................................................12
2-1-2 Phosphate buffer saline solution (PBS)..............................................13
2-1-3 Sirius Red Solution and staining ........................................................13
2-1-4 P53R172H/+ Allele .................................................................................14
2-2 Method...........................................................................................................15
2-2-1 Animal model of Vhlhloxp/loxp allele ....................................................15
2-2-2 preparation of simvastatin ..................................................................15
2-2-3 Simvastatin IP injection......................................................................15
2-2-4 Generate Vhlh-p53R172 H/+ double mutant...........................................16
2-2-5 IHC staining (Ki-67) ..........................................................................17
2-2-6 IHC staining (Sirius Red)...................................................................18
2-2-7 Tissue Analysis...................................................................................19
Chapter 3 Results and Discussion................................................................................20
3-1 Kidney tissue H&E staining of Vhlh mutant mouse......................................20
3-2 Simvastatin IP injection reduces inflammation .............................................22
3-2-1 Simvastatin drug IP injection of wile type (WT) control...................23
3-3-2 Simvastatin drug IP injection rescued phenotypes of Vhlh mutant mice
......................................................................................................................24
3-3 Quantification of fibrotic index (sirius red staining).....................................25
3-4 Relationship between simvastatin and clear cell formation ..................25
3-5-1 mouse breeding ..................................................................................30
3-5-2 Characterization of Vhlh and p53R172H/+ double mutation..................31
3-5-4 p53 mutant enhances proliferation index in Vhlh knockout...............33
3-5-6 Vhlh/p53
R172H/+
double allele exhibits hyperplastic growth ...............35
Chapter 4 Conclusion...................................................................................................36
Reference .....................................................................................................................39參考文獻 Reference
1. Potter, E.L., Normal and abnormal development of the kidney. 1972: Year Book Medical Publishers Chicago.
2. Kaelin, W.G.J.J.o.t.A.S.o.N., The von Hippel-Lindau gene, kidney cancer, and oxygen sensing. 2003. 14(11): p. 2703-2711.
3. Mochizuki, T., et al., PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. 1996. 272(5266): p. 1339-1342.
4. Greef, B. and T.J.B.j.o.c. Eisen, Medical treatment of renal cancer: new horizons. 2016. 115(5): p. 505.
5. Ding, J., et al., CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. 2018. 103: p. 51-56.
6. Varshney, N., et al., A review of Von Hippel-Lindau syndrome. 2017. 4(3): p. 20.
7. Zhang, J. and Q.J.B. Zhang, VHL and hypoxia signaling: beyond HIF in cancer. 2018. 6(1): p. 35.
8. De Paulsen, N., et al., Role of transforming growth factor-α in von Hippel–Lindau (VHL)−/− clear cell renal carcinoma cell proliferation: A possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. 2001. 98(4): p. 1387-1392.
9. Pritchett, T., et al., Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. 2015. 34(20): p. 2631-2639.
10. Ben-Neriah, Y. and M.J.N.i. Karin, Inflammation meets cancer, with NF-κB as the matchmaker. 2011. 12(8): p. 715.
11. He, G. and M.J.C.r. Karin, NF-κB and STAT3–key players in liver inflammation and cancer. 2011. 21(1): p. 159-168.
12. Cooks, T., et al., Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. 2013. 23(5): p. 634-646.
13. Dolcet, X., et al., NF-kB in development and progression of human cancer. 2005. 446(5): p. 475-482.
14. Ryan, K.M., J. O’Prey, and K.H.J.C.r. Vousden, Loss of nuclear factor-κB is tumor promoting but does not substitute for loss of p53. 2004. 64(13): p. 4415-4418.
15. Cohen, H.T. and F.J.J.N.E.J.o.M. McGovern, Renal-cell carcinoma. 2005. 353(23): p. 2477-2490.
16. Amerongen, G.P.v.N., et al., Simvastatin improves disturbed endothelial barrier function. 2000. 102(23): p. 2803-2809.
17. Jacobson, J.R., et al., Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. 2005. 288(6): p. L1026-L1032.
18. Lancet, S.S.S.S.G.J.T., Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). 1994. 344(8934): p. 1383-1389.
19. Moriyama, T., et al., Fluvastatin suppresses oxidative stress and fibrosis in the interstitium of mouse kidneys with unilateral ureteral obstruction. 2001. 59(6): p. 2095-2103.
20. Usui, H., et al., HMG‐CoA reductase inhibitor ameliorates diabetic nephropathy by its pleiotropic effects in rats. 2003. 18(2): p. 265-272.
21. Wilson, S.H., et al., Lipid‐lowering‐independent effects of simvastatin on the kidney in experimental hypercholesterolaemia. 2003. 18(4): p. 703-709.
22. Tuomisto, T.T., et al., Simvastatin has an anti-inflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Kruppel-like factor 2. 2008. 78(1): p. 175-184.
23. Lang, G.A., et al., Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. 2004. 119(6): p. 861-872.
24. Muller, P.A. and K.H.J.N.c.b. Vousden, p53 mutations in cancer. 2013. 15(1): p. 2-8.
25. Greenblatt, M., et al., Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. 1994. 54(18): p. 4855-4878.
26. Zhang, Y., et al., ONZIN upregulation by mutant p53 contributes to osteosarcoma metastasis through the CXCL5-MAPK signaling pathway. 2018. 48(3): p. 1099-1111.
27. Willis, A., et al., Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. 2004. 23(13): p. 2330-2338.
28. Nishida, J., K. Miyazono, and S.J.O. Ehata, Decreased TGFBR3/betaglycan expression enhances the metastatic abilities of renal cell carcinoma cells through TGF-β-dependent and-independent mechanisms. 2018. 37(16): p. 2197-2212.
29. Chari, N.S., et al., The p53 tumor suppressor network in cancer and the therapeutic modulation of cell death. 2009. 14(4): p. 336-347.
30. Milner, J. and E.J.C. Medcalf, Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. 1991. 65(5): p. 765-774.
31. Wang, X.-J., et al., Expression of a p53 mutant in the epidermis of transgenic mice accelerates chemical carcinogenesis. 1998. 17(1): p. 35.
32. Wang, X.J., et al., Analysis of centrosome abnormalities and angiogenesis in epidermal‐targeted p53172H mutant and p53‐knockout mice after chemical carcinogenesis: Evidence for a gain of function. 1998. 23(3): p. 185-192.
33. Street, J.M., et al., Automated quantification of renal fibrosis with Sirius Red and polarization contrast microscopy. 2014. 2(7): p. e12088.
34. Olive, K.P., et al., Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. 2004. 119(6): p. 847-860.
35. Kuo, C.-Y., C.-H. Lin, and T.J.C.r. Hsu, VHL Inactivation in Precancerous Kidney Cells Induces an Inflammatory Response via ER Stress–Activated IRE1α Signaling. 2017. 77(13): p. 3406-3416.
36. Corsello, S.M., et al., The Drug Repurposing Hub: a next-generation drug library and information resource. 2017. 23(4): p. 405-408.
37. Ridker, P.M., et al., Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. 1997. 336(14): p. 973-979.
38. Order, T., Picrosirius Red Stain Kit. 2009.
39. Kiernan, J., Histological and histochemical methods, theory and practice. Delhi, India: Butter Worth Heinemann. 1999, Replika Press Pvt Ltd.
40. Junqueira, L.C.U., G. Bignolas, and R.R.J.T.H.j. Brentani, Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. 1979. 11(4): p. 447-455.
41. Malkusch, W., B. Rehn, and J.J.E.l.r. Bruch, Advantages of Sirius Red staining for quantitative morphometric collagen measurements in lungs. 1995. 21(1): p. 67-77.
42. Whittaker, P., et al., Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. 1994. 89(5): p. 397-410.
43. Zhang, J., et al., Effect of simvastatin on collagen I deposition in non-infarcted myocardium: role of NF-κB and osteopontin. 2010. 88(11): p. 1026-1034.
44. Piperi, C., et al., XBP1: a pivotal transcriptional regulator of glucose and lipid metabolism. 2016. 27(3): p. 119-122.
指導教授 徐沺(Tien Hsu) 審核日期 2020-8-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare