博碩士論文 107226056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.138.112.77
姓名 盧士盟(Shih-Meng Lu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以光子晶體能帶為基礎的多層膜等效晶體理論
(Effective Crystal Theory of Multilayer Thin Films Based on Photonic Crystal Band Structure)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討光波在多層膜中的各向異性 (anisotropic) 傳播特性。我們以晶體光學與光子晶體理論模擬多層介質膜的等效光學參數,並闡釋其物理意義。本論文嘗試結合幾項現有等效理論的優點,分析並比較各等效理論的應用與侷限,並從模擬結果中總結出本論文等效理論的「適用條件」:即單一週期光學厚度,不得超過0.4個入射波長(Nd<0.4λ),並發現在該條件之下,等效晶體理論具有不錯的預測性。文中引入傳統EMA (effective medium approximation) 作為對照,與本文引入等頻率曲線 (iso-frequency curve) 的等效晶體理論相比較。兩者最大的差異,在於等效介電常數的計算方式。我們從模擬數據中分析造成結果差異的物理成因,同時臚列兩者的優劣之處。
文內前三章,主要介紹現有理論與相關細節的推導,以便在後面章節使用。第四章則為本文等效介質理論的理論構擬,後面章節接續分析結果數據。文章的最後,總結全文,再試著提出未來工作及可能應用。
摘要(英) In this thesis we discuss the anisotropic propagation properties of light waves in multilayer films. The effective optical parameters of the multilayer dielectric films are obtained by using crystal optics and photonic crystal theories, and their physical meanings are explained. We analyze and compare the applicability and limitation of each effective medium theory in the literature, and try to combine their advantages in our newly developed theory. Based on a lot number of numerical simulations, we propose the "applicability condition" of our effective crystal theory as: the optical thickness of a single period must not exceed 0.4 wavelength of the incident light (Nd<0.4λ). Under this condition, our effective crystal theory has good predictability. In this thesis, the traditional EMA (effective medium approximation) is used as the reference, and compared in the simulations with our effective crystal theory based on the iso-frequency curve. The essential difference between these two kinds of theory is the calculation method of the effective dielectric constants. We analyze the physical causes for the difference in the simulation results, and list the advantages and disadvantages of both.
The first three chapters focus on the introduction of existing theories and the related derivation details which will be used later. In the fourth chapter we construct the effective crystal theory in detail, and analyze the simulation results according to this theory. In the last chapter we propose some future works and possible applications.
關鍵字(中) ★ 等效晶體理論
★ 多層膜
★ 等頻率曲線
關鍵字(英) ★ EMA
★ iso-frequency curve
★ effective crystal theory
論文目次 摘要 I
Abstract IV
致謝 IIV
目錄 IVV
圖目錄 VI
一、緒論 1
1-1 綜觀多層膜等效理論發展 1
1-2介質等效理論的實際應用 4
二、介質中傳遞的電磁波 6
2-1 在各向同性(Isotropic)介質中傳遞的電磁波 7
2-2 在各向異性(Anisotropic)介質中傳遞的電磁波 7
2-2-1 Normal Surface (K-Surface) 9
2-2-2色散關係(Dispertion Relation) 142
2-2-3單軸晶體 (uniaxial Crystal) 14
三、穿透率及反射率 16
3-1多層各向同性(Isotropic)介質的穿透率及反射率 16
3-1-1膜矩陣 16
3-2 各向異性(Anisotropic)介質的穿透率及反射率 19
3-2-1平面電磁波在單軸異向性介質內的傳播 19
3-2-2平面電磁波向單軸異向性介質的反射與透射 20
3-3多層膜結構的各向異性特性 23
3-3-1 串並聯近似(Series and Parallel Mixing Rules)的等效介電常數 23
3-3-2等頻率曲線(Iso-frequency Curve) 23
3-4等效晶體理論 27
3-4-1傳統EMA(Effective Medium Approximation)的等效介質理論 27
3-4-2引入等頻率曲線(Iso-Frequency Curve)的等效晶體理論 28
四、模擬數據與分析 31
4-1傳統EMA的等效介質理論 31
4-1-1改變單一週期厚度(純介電質結構) 31
4-1-2改變入射角度(純介電質結構) 34
4-1-3改變單一週期厚度(介電質-金屬結構) 35
4-1-4改變入射角度(介電質-金屬結構) 37
4-2引入等頻率曲線的等效晶體理論 38
4-2-1改變單一週期厚度(純介電質結構) 38
4-2-2改變入射角度(純介電質結構) 41
4-2-3改變單一週期厚度(介電質-金屬結構) 43
4-2-4改變入射角度(介電質-金屬結構) 44
4-3數據分析和比較 46
4-3-1改變單一週期厚度(純介電質結構) 數據分析 46
4-3-2改變入射角度(純介電質結構) 數據分析 49
4-3-3改變單一週期厚度(介電質-金屬結構) 數據分析 50
4-3-4改變入射角度(介電質-金屬結構) 數據分析 51
4-3-5等效參數的優化 52
4-4表面阻抗對穿透、反射率光譜的影響 56
4-4-1反射率零點與表面阻抗(Surface Impedance)的關係 57
五、結論與未來展望 59
5-1 結論 59
5-2 未來展望 59
參考文獻 61
參考文獻 [1] Žarko Gačević, Nenad Vukmirović, “Effective Refractive-Index Approximation: A Link between Structural and Optical Disorder of Planar Resonant Optical Structures”, Phys. Rev. Applied 9, 064041 (2018).
[2] 李正中, “薄膜光學與鍍膜技術第九版”,藝軒圖書出版社(2020).
[3] Wang, & Cao, “A Review of Impedance Matching Techniques in Power Line Communications. Electronics”, 8. 1022. 10.3390 (2019).
[4] S. K. Patil1, M. Y. Koledintseva, R. W. Schwartz, and W. Huebner, “Prediction of effective permittivity of diphasic dielectrics using an equivalent capacitance model”, JOURNAL OF APPLIED PHYSICS 104, 074108 (2008).
[5] Feng-Ju Hsieh1, Wei-Chih Wang, “Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models”, Journal of Applied Physics 112, 064907 (2012).
[6] S. Arslanagić et al., “A Review of the Scattering-Parameter Extraction Method with Clarification of Ambiguity Issues in Relation to Metamaterial Homogenization”, in IEEE Antennas and Propagation Magazine, vol. 55, no. 2, pp. 91-106(2013).
[7] Feynman, Richard Phillips, Leighton, Robert B., Sands, Matthew, “The Feynman Lectures on Physics”, Basic Books(2011).
[8] Vadim A. Markel, "Introduction to the Maxwell Garnett approximation: tutorial," J. Opt. Soc. Am. A 33, 1244-1256 (2016).
[9] Jen,Yi-Jun, “Design a Stratiform Metamaterial with Precise Optical Property”, Symmetry, 1464, SCI(2019).
[10] Partha P. Banerjee, Rudra Gnawali, Hammid Al-Ghezi, “Optical waves and beams in layered isotropic and anisotropic media”, Proc. SPIE 11081, Active Photonic Platforms XI, (2019).
[11] Martin Foldyna, Razvigor Ossikovski, Antonello De Martino, Bernard Drevillon, Kamil Postava, Dalibor Ciprian, Jaromír Pištora, and Koki Watanabe, "Effective medium approximation of anisotropic lamellar nanogratings based on Fourier factorization," Opt. Express 14, 3114-3128 (2006).
[12] 欒丕綱, “光子晶體:從蝴蝶翅膀到奈米光子學”,五南圖書(2010).
[13] Yeh, Pochi, “Optical Waves in Layered Media”, Wiley-Interscience (2005).
[14] J. D. Jackson, Classical electrodynamics, 3rd Ed, John Wiley &Sons, New York(1999).
[15] Yongmin Liua, Xiang Zhang, “Metamaterials: a new frontier of science and technology”, Chem. Soc. Rev(2011).
[16] Pi-Gang Luan, “Power loss and electromagnetic energy density in a dispersive metamaterial medium” ,Phys. Rev. E 80, 046601(2009).
[17] Pi-Gang Luan, “Note on the Lagrangian density and Hamiltonian density for the electrodynamics of metamaterials”, unpublished.
[18] Hassan S. Ashour, “Near-Zero-Refractive-Index Structure at Optical Frequencies”, Advances in Condensed Matter Physics(2011).
[19] Shining Zhu, Xiang Zhang, Metamaterials, “artificial materials beyond nature”, National Science Review, Volume 5, Issue 2(2018).
[20] Snyder, A.W., Love, J., “Optical Waveguide Theory”, Springer (1983).
[21] Delong Zhang, Guilan Ding, and Caihe Chen, “Theoretical Analysis of Guided Mode and Effective Refractive Index at 1.53;mum in Ti:LiNbO3 Strip Waveguides”, J. Lightwave Technol. 16, 459- (1998).
[22] Kin Seng Chiang, Chi Lai Wong, Sin Yip Cheng, and Hau Ping Chan, “Refractive-Index Profiling of Graded-Index Planar Waveguides from Effective Indexes Measured with Different External Refractive Indexes”, J. Lightwave Technol. 18, 1412- (2000).
[23] Shi-Yu Xu, Bei Chen, Ping-Rang Hua, Edwin Yue-Bun Pun, and De-Long Zhang, “Refractive Index Profile in Special Structure of Optical-Damage-Resistant Mg-Diffused Near-Stoichiometric Ti:Mg:LiNbO3 Waveguide” J. Lightwave Technol. 30, 3330-3337 (2012).
[24] Willie J. Padilla, Dimitri N. Basov, David R. Smith, “Negative refractive index metamaterials”, Materials Today, Volume 9, Issues 7–8(2006)
[25] A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index”, J. Opt. Technol. 75, 255-265 (2008).
[26] Alexander V. Kildishev, Wenshan Cai, Uday K. Chettiar, Hsiao-Kuan Yuan, Andrey K. Sarychev, Vladimir P. Drachev, and Vladimir M. Shalaev, “Negative refractive index in optics of metal-dielectric composites”, J. Opt. Soc. Am. B 23, 423-433 (2006).
[27] A. V. Novitskiĭ and L. M. Barkovskiĭ, “Modes in three-layer fibers with negative refractive index”, J. Opt. Technol. 73, 749-753 (2006).
[28] 黃家健, “超材料-光電物理”, 物理雙月刊36卷4期(2014).
[29] Reshef, O., De Leon, I., Alam, M.Z. et al., “Nonlinear optical effects in epsilon-near-zero media”, Nat Rev Mater 4, 535–551 (2019).
[30] Kinsey, N., DeVault, C., Boltasseva, A. et al., “Near-zero-index materials for photonics”, Nat Rev Mater 4, 742–760 (2019).
[31] A. Anopchenko and H. W. H. Lee, “ENZ Conducting Oxide Broadband Perfect Absorbers with Deep Sub-Wavelength Thicknesses”, in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2017).
[32] S. Inampudi, D. Slocum, D. C. Adams, S. Vangala, W. D. Goodhue, D. Wasserman, and V. A. Podolskiy, “ENZ-enhanced transmission through subwavelength slits”, in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (2011).
[33] Ahmed A. Elsayed, Yasser M. Sabry, Frédéric Marty, Tarik Bourouina, and Diaa Khalil, "Optical modeling of black silicon using an effective medium/multi-layer approach," Opt. Express 26, 13443-13460 (2018).
[34] Brent C. Bergner, Thomas A. Germer, and Thomas J. Suleski, "Effective medium approximations for modeling optical reflectance from gratings with rough edges," J. Opt. Soc. Am. A 27, 1083-1090 (2010).
[35] Philippe Lalanne, "Effective medium theory applied to photonic crystals composed of cubic or square cylinders," Appl. Opt. 35, 5369-5380 (1996).
[36] Tuck, Choy. “Effective Medium Theory (1st ed.)”, Oxford: Oxford University Press, ISBN 978-0-19-851892-1(1999).
[37] Goretti G. Hernandez-Cardoso, Abhishek K. Singh, and Enrique Castro-Camus, "Empirical comparison between effective medium theory models for the dielectric response of biological tissue at terahertz frequencies," Appl. Opt. 59, D6-D11 (2020).
[38] Graham Hugh Cross, "Fundamental limit to the use of effective medium theories in optics," Opt. Lett. 38, 3057-3060 (2013).
[39] John Lekner, "Brewster angles in reflection by uniaxial crystals," J. Opt. Soc. Am. A 10, 2059-2064 (1993).
[40] Amnon Yariv, Pochi Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation”, Wiley (1984).
指導教授 李正中 欒丕綱 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明