參考文獻 |
[1] F. Nez, F. Biraben, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2-5D 3/2two-photon transitions in rubidium", Opt. Commun. 102, 432–438 (1993).
[2] B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, "Absolute Frequency Measurement of the 2S-8S/D Transitions in Hydrogen and Deuterium: New Determination of the Rydberg Constant", Phys. Rev. Lett. 78, 440–443 (1997).
[3] A. Onae, T. Ikegami, K. Sugiyama, F. L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser", Opt. Commun. 183, 181–187 (2000).
[4] M. Poulina, C. Latrassea, D. Touahria, and M. Tetu, "Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms", Opt. Commun. 207, 233–242 (2002).
[5] Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, "Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium", Opt. Commun. 108, 91–96 (1994).
[6] T. J. Quinn, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)", Metrologia 40, 103–133 (2003).
[7] A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, "Frequency stabilization of a frequency-doubled 1556-nm source to the 5S 1/2- 5D 5/2 two-photon transitions of rubidium", Opt. Lett. 25, 905–907 (2000).
[8] C. M. Wu, T. W. Liu, and W. Y. Cheng, "Quantum interference in two-photon spectroscopy for laser stabilization and cesium-cell comparison", Phys. Rev. A 92, 042504 (2015).
[9] D. Touahri, 0. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, "Frequency measurement of the 5S 1/2 (F=3)→5D 5/2 (F=5) two-photon transition in rubidium", Opt. Commun. 133, 471–478 (1997).
[10] C S Edwards, G P Barwood, H S Margolis, P Gill, and W R C Rowley, " Development and absolute frequency measurement of a pair of 778nm two-photon rubidium standards", Metrologia 42, 464–467 (2005).
[11] O. Terra, and H. Hussein1, "An ultra‑stable optical frequency standard for telecommunication purposes based upon the 5S 1/2-5D 5/2 two‑photon transition in rubidium", Appl. Phys. B 122, 1-12 (2016).
[12] K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, "Compact Optical Atomic Clock Based on a Two-Photon Transition in Rubidium", Phys. Rev. Appl. 9, 014019 (2018).
[13] G. K. Woodgate, "Elementary Atomic Structure", 2nd ed. (1980).
[14] A. Corney, "Atomic and Laser Spectroscopy", (1980).
[15] W. Demtröder, "Laser Spectroscopy 1 Basic Principles", 5nd ed. (2014).
[16] V. S. Letokhov, and V. P. Chebotayev, "Nonlinear Laser Spectroscopy",(1977).
[17] C. J. Foot, "Atomic Physics", (2015).
[18] E. D. Black, "An introduction to Pound–Drever–Hall laser frequency stabilization", Am. J. Phys. 69, 79-87(2001).
[19] F. Biraben, M. Bassini, and B. Cagnac, "Line-shapes in Doppler-free two-photon spectroscopy.The effect of finite transit time", J. Phyx. France 40, 445-455 (1979).
[20] N. D. Zameroski, G. D. Hager, C. J. Erickson , and J. H. Burke, "Pressure broadening and frequency shift of the 5S 1/2- 5D 5/2 and 5S 1/2- 7S 1/2 two photon transitions in (_^85)Rb by the noble gases and N_2", J. Phys. B: At. Mol. Opt. Phys. 47, 225205 (2014).
[21] R. Felder, D. Touahri, 0. Acef, L. Hilico, J. J. Zondy , A. Clairon, B. d. Beauvoir, F. Biraben, L. Julien, F. Nez, and Y. Millerioux, "Performance of a GaA1As laser diode stabilized on a hyperfine component of two- photon transitions in rubidium at 778 nm ", SPIE Proceedings 2378, 52-57 (1995).
[22] E. Arimondo, M. Inguscio, and P. Violino, "Experimental determinations of the hyperfine structure in the alkali atoms", Reviews of Modern Physics 49, 31 (1977).
[23] S. Bize, Y. Sortais, M. S. Santos, C. Mandache, A. Clairon, and C. Salomon, "High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain", Europhysics Letters 45, 558 (1999).
[24] K. H. Chen, C. M. Wu, S. R. Wu, H. H. Yu, T. W. Liu, and W. Y. Cheng, "Influence of atmospheric helium on secondary clocks", Opt. Lett. 45, 1-4 (2020). |