博碩士論文 106222019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.118.145.114
姓名 石宇哲(SHIH, YU-JHE)  查詢紙本館藏   畢業系所 物理學系
論文名稱 無頻率調制銣原子光鐘之研究
(The study of rubidium optical clock without frequency modulation)
相關論文
★ 銫原子 6S-6D 雙光子超精細耦合常數★ 同調性毫赫茲以下的光學偏頻鎖相系統測 量高分辨率的銫原子 6S-6D 超精細躍遷
★ 銫原子穩頻822奈米二級光鐘★ 銫原子6S1/2-6D3/2超精細躍遷絕對頻率與超精細結構
★ 銫原子蘭道g值之量測★ 偏頻鎖相超短脈衝雷射以實現銫及銣原子高解析直接光梳光譜
★ 碘分子R(81)29-0 超精譜線用於539.5-nm 雷射穩頻★ 銣原子光鐘絕對頻率之量測
★ Direct comb laser spectroscopy of Cs 6S-8S, Rb 5S-5D hyperfine transitions—toward building up a novel Ti:sapphire comb laser with merely 6cm Cs-Rb mixed cell
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-20以後開放)
摘要(中) 本論文為了發展銣原子二級光鐘以建立時間頻率標準。實驗上,我們利用電光調制器將778 nm光纖雷射鎖在銣原子雙光子躍遷的交叉譜線。藉由改變電光調制器的調制頻率,進而改變雷射的頻率,以精密地量測銣原子5S-5D雙光子躍遷譜線。778 nm穩頻雷射的穩定度,在1秒的積分時間,Allan deviation已達到5×10^(-12),因為量測受限於銫原子鐘的穩定度,所以我們認為778 nm穩頻雷射的穩定度會更好。
我們修正光強度偏移造成原子躍遷頻率偏移的影響,藉由超精細結構的能階間隔,推算A及B超精細結構常數為:
A(85Rb,5D5/2):-2.2122(24) MHz,B(85Rb,5D5/2):2.6881(38) MHz,A(87Rb,5D5/2):-7.4595(29) MHz,B(87Rb,5D5/2):1.2748(23) MHz。同位素偏移(Isotope shift):160.630(7) MHz。
摘要(英) The aim of this thesis is to develop a rubidium secondary optical clock to establish a time and frequency standard. In this experiment, the 778 nm fiber laser is locked to crossover lines of rubidium two-photon transition via electro-optical modulator. When changing the modulation frequency of the electro-optic modulator, the laser frequency is correspondingly changed. So we can precisely measure the 5S-5D two-photon transition spectrum in rubidium.
For the stability of the 778 nm frequency-stabilized laser, the Allan deviation can reach 5×10^(-12) within 1 second of integration time. We believe that the stability of the 778 nm frequency-stabilized laser is better, because the measurement is limited by the stability of cesium atomic clock.
We correct the influence of the shift of atomic transition frequency caused by light intensity. In addition, we calculate the A and B hyperfine structure constants by using the energy level interval of hyperfine structure.
A(85Rb,5D5/2):-2.2122(24) MHz, B(85Rb,5D5/2):2.6881(38) MHz, A(87Rb,5D5/2):-7.4595(29) MHz, B(87Rb,5D5/2):1.2748(23) MHz. Isotope shift:160.630(7) MHz.
關鍵字(中) ★ 銣原子
★ 二級光鐘
關鍵字(英) ★ Rubidium
★ secondary optical clock
論文目次 目錄
摘要.............................................i
Abstract....................................... ii
誌謝辭...........................................iii
目錄.............................................iv
圖目錄...........................................vi
表目錄...........................................viii
第一章 緒論.....................................1
1.1 研究動機..................................1
1.2 銣原子歷史相關實驗.........................2
第二章 基本理論.................................7
2.1 銣原子的超精細結構.........................7
2.2 譜線增寬效應..............................11
2.3 光強度偏移................................14
2.4 同位素偏移(isotope shift).................15
2.5 Pound-Drever-Hall 穩頻法..................17
第三章 實驗架設..................................20
3.1 778 nm光纖雷射............................20
3.2 穩頻雷射系統...............................23
3.2.1 Pound-Drever-Hall 穩頻法............24
3.2.2 光學共振腔之設計.....................27
3.2.3 電光頻率調制鎖頻法...................30
3.3 掃頻雷射系統..............................33
第四章 實驗結果與分析............................34
4.1 穩頻雷射系統分析...........................34
4.1.1 Pound-Drever-Hall訊號...............34
4.1.2 穩頻雷射的穩定度......................36
4.2 銣原子5S-5D螢光譜線分析.....................38
4.3 銣原子5S-5D的躍遷頻率量測...................44
4.4 銣原子5D5/2的超精細結構常數.................53
4.5 銣原子5S1/2-5D5/2的同位素偏移...............54
第五章 結論與未來展望..............................55
參考文獻 ...........................................56
參考文獻 [1] F. Nez, F. Biraben, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2-5D 3/2two-photon transitions in rubidium", Opt. Commun. 102, 432–438 (1993).
[2] B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, "Absolute Frequency Measurement of the 2S-8S/D Transitions in Hydrogen and Deuterium: New Determination of the Rydberg Constant", Phys. Rev. Lett. 78, 440–443 (1997).
[3] A. Onae, T. Ikegami, K. Sugiyama, F. L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser", Opt. Commun. 183, 181–187 (2000).
[4] M. Poulina, C. Latrassea, D. Touahria, and M. Tetu, "Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms", Opt. Commun. 207, 233–242 (2002).
[5] Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, "Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium", Opt. Commun. 108, 91–96 (1994).
[6] T. J. Quinn, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)", Metrologia 40, 103–133 (2003).
[7] A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, "Frequency stabilization of a frequency-doubled 1556-nm source to the 5S 1/2- 5D 5/2 two-photon transitions of rubidium", Opt. Lett. 25, 905–907 (2000).
[8] C. M. Wu, T. W. Liu, and W. Y. Cheng, "Quantum interference in two-photon spectroscopy for laser stabilization and cesium-cell comparison", Phys. Rev. A 92, 042504 (2015).
[9] D. Touahri, 0. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, "Frequency measurement of the 5S 1/2 (F=3)→5D 5/2 (F=5) two-photon transition in rubidium", Opt. Commun. 133, 471–478 (1997).
[10] C S Edwards, G P Barwood, H S Margolis, P Gill, and W R C Rowley, " Development and absolute frequency measurement of a pair of 778nm two-photon rubidium standards", Metrologia 42, 464–467 (2005).
[11] O. Terra, and H. Hussein1, "An ultra‑stable optical frequency standard for telecommunication purposes based upon the 5S 1/2-5D 5/2 two‑photon transition in rubidium", Appl. Phys. B 122, 1-12 (2016).
[12] K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt, I. Coddington, M. W. Bishop, and J. H. Burke, "Compact Optical Atomic Clock Based on a Two-Photon Transition in Rubidium", Phys. Rev. Appl. 9, 014019 (2018).
[13] G. K. Woodgate, "Elementary Atomic Structure", 2nd ed. (1980).
[14] A. Corney, "Atomic and Laser Spectroscopy", (1980).
[15] W. Demtröder, "Laser Spectroscopy 1 Basic Principles", 5nd ed. (2014).
[16] V. S. Letokhov, and V. P. Chebotayev, "Nonlinear Laser Spectroscopy",(1977).
[17] C. J. Foot, "Atomic Physics", (2015).
[18] E. D. Black, "An introduction to Pound–Drever–Hall laser frequency stabilization", Am. J. Phys. 69, 79-87(2001).
[19] F. Biraben, M. Bassini, and B. Cagnac, "Line-shapes in Doppler-free two-photon spectroscopy.The effect of finite transit time", J. Phyx. France 40, 445-455 (1979).
[20] N. D. Zameroski, G. D. Hager, C. J. Erickson , and J. H. Burke, "Pressure broadening and frequency shift of the 5S 1/2- 5D 5/2 and 5S 1/2- 7S 1/2 two photon transitions in (_^85)Rb by the noble gases and N_2", J. Phys. B: At. Mol. Opt. Phys. 47, 225205 (2014).
[21] R. Felder, D. Touahri, 0. Acef, L. Hilico, J. J. Zondy , A. Clairon, B. d. Beauvoir, F. Biraben, L. Julien, F. Nez, and Y. Millerioux, "Performance of a GaA1As laser diode stabilized on a hyperfine component of two- photon transitions in rubidium at 778 nm ", SPIE Proceedings 2378, 52-57 (1995).
[22] E. Arimondo, M. Inguscio, and P. Violino, "Experimental determinations of the hyperfine structure in the alkali atoms", Reviews of Modern Physics 49, 31 (1977).
[23] S. Bize, Y. Sortais, M. S. Santos, C. Mandache, A. Clairon, and C. Salomon, "High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain", Europhysics Letters 45, 558 (1999).
[24] K. H. Chen, C. M. Wu, S. R. Wu, H. H. Yu, T. W. Liu, and W. Y. Cheng, "Influence of atmospheric helium on secondary clocks", Opt. Lett. 45, 1-4 (2020).
指導教授 鄭王曜(Cheng, Wang-Yau) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明