參考文獻 |
[1] J. L. Hall, Nodel lecture: Defining and measuring optical frequencies, Rev. Mod. Phys. 78, 1279 (2006).
[2] T. W. Hänsch, Nobel lecture: Passion for precision, Rev. Mod. Phys. 78, 1297 (2006).
[3] L.-S. Chen and J. Ye, Extensive, high-resolution measurement of hyperfine interactions: Precise investigations of molecular potentials and wave functions, Chem. Phys. Lett. 381, 777 (2003).
[4] A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United Time-Frequency Spectroscopy for Dynamics and Global Structure”, Science 306, 2063 (2004).
[5] V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb”, Opt. Lett. 30, 1734 (2005).
[6] A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet”, Nature (London) 482, 68 (2012).
[7] S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular Fingerprinting With the Resolved Modes of a Femtosecond Laser Frequency Comb”, Nature (London) 445, 627 (2007).
[8] I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs”, Phys. Rev. Lett. 100(1), 013902 (2008).
[9] J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb”, Nat. Photonics 3(2), 99–102 (2009).
[10] Christoph Gohle, Björn Stein, Albert Schliesser, Thomas Udem, and Theodor W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra”, Phys. Rev. Lett. 99, 263902 (2007).
[11] Birgitta Bernhardt, Akira Ozawa, Patrick Jacquet, Marion Jacquey, Yohei Kobayashi, Thomas Udem, Ronald Holzwarth, Guy Guelachvili, Theodor W. Hänsch & Nathalie Picqué, “Cavity-enhanced dual-comb spectroscopy”, Nat. Photon. 4, 55–57 (2010).
[12] B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I.T. Sorokina, N. Picqué, T.W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers”, Applied Physics B, 100, 3-8 (2010).
[13] Itan Barmes, Stefan Witte, and Kjeld S. E. Eikema, “Spatial and Spectral Coherent Control over Direct Frequency Comb Excitation”, Phys. Rev. Lett. 111, 023007 (2013).
[14] David Hayes, D.N. Matsukevich, P. Maunz, D. Hucul, Q. Quraishi, Steven Olmschenk, W.C. Campbell, J. Mizrahi, Crystal Senko, Christopher Monroe, "Entanglement of Atomic Qubits Using an Optical Frequency Comb", Phys. Rev. Lett., 104, 140501 (2010).
[15] Itan Barmes, Stefan Witte, and Kjeld S. E. Eikema, “High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses”, Phys. Rev. Lett. 111, 023007 (2013).
[16] P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fouriertransform spectrometry with frequency combs”, Phys. Rev. A 93(2), 021802 (2016).
[17] I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution”, Opt. Lett. 34(14), 2153–2155 (2009).
[18] I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy”, Optica 3(4), 414–426 (2016).
[19] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff , "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis", Science 288, 635 (2000).
[20] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser", Phys. Rev. Lett. 82, 3568 (1999).
[21] D. Fehrenbacher, P. Sulzer, A. Liehl, T. Kälberer, C. Riek, D. V. Seletskiy, AND A. Leitenstorfer, “Free-running performance and full control of a passively phase-stable Er:fiber frequency comb”, Optica 2(10), 917-923 (2015).
[22] Takuro Ideguchi, Antonin Poisson, Guy Guelachvili, Nathalie Picqué & Theodor W. Hänsch, “Adaptive real-time dual-comb spectroscopy”, Nat Commun 5, 3375 (2014).
[23] C. M. Wu, T. W. Liu, M. H. Wu, R. K. Lee, and W. Y. Cheng, "Absolute frequency of cesium 6S-8S 822-nm two photon transition by a high-resolution scheme", Opt. Lett. 38, 3186 (2013).
[24] Liu, T., Wu, C., Hsu, Y. et al. Dual Ti:sapphire comb lasers by a fiber laser pumping scheme and a hand-sized optical frequency reference. Appl. Phys. B 117, 699–705 (2014).
[25] Jonas Morgenweg, Itan Barmes & Kjeld S. E. Eikema, “Ramsey-comb spectroscopy with intense ultrashort laser pulses”, Nature Physics volume 10, 30–33(2014)
[26] Victor Brasch, Erwan Lucas, John D Jost, Michael Geiselmann, and Tobias J Kippenberg, “Self-referenced photonic chip soliton Kerr frequency comb”, Light Sci Appl. 6(1) (2017).
[27] Guy Millot, Stéphane Pitois, Ming Yan, Tatevik Hovhannisyan, Abdelkrim Bendahmane, Theodor W. Hänsch & Nathalie Picqué, “Frequency-agile dual-comb spectroscopy”, Nature Photonics volume 10, 27–30 (2016).
[28] Haoyuan Lu, Jianxiao Leng and Jianye Zhao, “The Optimization of Cold Rubidium Atom Two photon Transition Excitation with an Erbium-Fiber Optical Frequency Comb”, Appl. Sci. 9(5), 921 (2019).
[29] P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Hänsch, “Two photon frequency comb spectroscopy of the 6?–8? transition in cesium”, Opt. Lett. 32, 6, 701-703 (2007).
[30] Jason E. Stalnaker, Vela Mbele, Vladislav Gerginov, Tara M. Fortier, Scott A. Diddams, Leo Hollberg, and Carol E. Tanner, “Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor”, Phys. Rev. A 81, 043840 (2010).
[31] Bjorkholm J. E. and Liao P. F., ”Line shape and strength of two photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state”, Phys. Rev. A 14, 751 (1976).
[32] Wang L. R., Zhang Y. C., Xiang S. S., Cao S. K., Xiao L. T. and Jia S. T., “Two photon spectrum of 87Rb using optical frequency comb”, Chin. Phys. B 24, 063201 (2015).
[33] Ming-Sheng Ko and Yi-Wei Liu, “Observation of rubidium 5S1/2→7S1/2 two photon transitions with a diode laser”, Opt. Lett. 29, 15, 1799-1801 (2004).
[34] Griffiths, David J., “Introduction to Quantum Mechanics” (2nd ed.). Prentice Hall. (2004).
[35] Alan Corney. Atomic and Laser Spectroscopy. Oxford University Press (1977).
[36] Daniel A. Steck, “Cesium D Line Data,” Oregon Center for Optics and Department of Physics, revision 1.6 (2003).
[37] Daniel Adam Steck, “Rubidium 85 D Line Data,” Oregon Center for Optics and Department of Physics, revision 2.1.4 (2010).
[38] Daniel Adam Steck, “Rubidium 87 D Line Data,” Oregon Center for Optics and Department of Physics, revision 1.6 (2003).
[39] F. Nez, F. Biraben, R. Felder, and Y. Millerioux. Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two photon transitions in rubidium. Optics Communications, (1993).
[40] R. W. Boyd, “Nonlinear Optics”, Academic Press (2003).
[41] K. Shimoda, “High-Resolution Laser Spectroscopy”, Springer (1976).
[42] W. Demtröder, “Laser Spectroscopy: Basic Concepts and Instrumentation”, 4th ed. Springer (2008).
[43] T. Halfmann, T. Rickes, N.V. Vitanov1, and K. Bergmann, "Lineshapes in coherent two photon excitation", Opt. Commun. 220, 353 (2003).
[44] Chien-Ming Wu, Tze-Wei Liu, and Wang-Yau Cheng, “Quantum interference in two photon spectroscopy for laser stabilization and cesium-cell comparison”, Phys. Rev. A 92, 042504 (2015).
[45] D. C. Yost, A. Matveev, E. Peters, A. Beyer, T. W. Hänsch, and Th. Udem, "Quantum interference in two photon frequency-comb spectroscopy", Phys. Rev. A 90, 012512 (2014).
[46] T. H. Yoon, A. Marian, J. L. Hall and J. Ye, "Phase-coherent multilevel two photon transitions in cold Rb atoms: Ultrahigh-resolution spectroscopy via frequency-stabilized femtosecond laser", Phys. Rev. A 63, 011402(R) (2000).
[47] LASER QUANTUM GmbH, GIGAJET TWIN 20c/20c.
[48] E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system”, Rev. Sci. Instrum. 76, 063112 (2005).
[49] Chih-Hao Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator”, Rev. Sci. Instrum. 79, 033104 (2008).
[50] Thorlabs Inc. Model: FGB37, FGL455 and FB420-10.
[51] A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218– 223 (2006).
[52] Photline Inc. Model: NIR-MPX800-LN-10-P-P-FA-FA.
[53] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization Using an Optical Resonator", Appl. Phys. B 31, 97 (1983).
[54] Wang-Yau Cheng, Ting-Ju Chen, Chia-Wei Lin, Bo-Wei Chen, Ya-Po Yang, and Hung Yi Hsu, "Robust sub-millihertz-level offset locking for transferring optical frequency accuracy and for atomic two photon spectroscopy," Opt. Express 25, 2752-2762 (2017).
[55] Chien-Ming Wu, “Optical frequency comb laser system and Cesium 6S-8S two-photon transition spectroscopy”, Ph.D. thesis, National Tsing Hua University (2014).
[56] N. R. Newbury, I. Coddington, and W. C. Swann, "Sensitivity of coherent dual-comb spectroscopy", Opt. Express 18, 7929 (2010), and the references therein.
[57] Svelto, “Principles of Lasers”, 5th ed., Spinger (2010).
[58] D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogeneous laser-part I: theory," IEEE J. Quantum Electron. QE6, 694-708 (1970).
[59] H. W. Mocker and R. J. Collins, "Mode competition and self-locking effects in a Q-switched ruby laser", Appl. Phys. Lett. 7, 270-272 (1965).
[60] D. E. Spence, P. N. Kean, and W. Sibbett, "60 fsec pulse generation by a dispersion-compensated, coupled-cavity, mode-locked Ti:sapphire laser", Opt. Lett. 16, 42-44 (1991).
[61] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics”, 2nd ed., Wiley Interscience (2007).
[62] S. T. Cundiff, J. Ye, and J. L. Hall, "Optical frequency synthesis based on mode-locked lasers", Rev. Sci. Instrum. 72, 3749 (2001).
[63] R. Ramaswami, K. Sivarajan, "Optical Networks: A Practical Perspective", Elsevier Science & Technology Books (1998).
[64] By Emmanuel Boutet - own work, based on en:Image:Self-phase-modulation.png from Bob Mellish, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1861258
[65] R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms", Opt. Lett. 9, 150-152 (1984).
[66] F. Salin, A. Brun, "Dispersion compensation for femtosecond pulses using high index prisms", J. Appl. Phys. 61, 10 (1987).
[67] Sterling Backus, Charles G. Durfee III, Margaret M. Murnane, and Henry C. Kapteyn, "High power ultrafast lasers", Rev. of Sci. Inst. 69, 1207-1223 (1998).
[68] G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics", Science 286, 1507-1512 (1999). |