博碩士論文 102282006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.142.200.226
姓名 劉子維(Tze-Wei Liu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Direct comb laser spectroscopy of Cs 6S-8S, Rb 5S-5D hyperfine transitions—toward building up a novel Ti:sapphire comb laser with merely 6cm Cs-Rb mixed cell)
相關論文
★ 銫原子 6S-6D 雙光子超精細耦合常數★ 同調性毫赫茲以下的光學偏頻鎖相系統測 量高分辨率的銫原子 6S-6D 超精細躍遷
★ 銫原子穩頻822奈米二級光鐘★ 銫原子6S1/2-6D3/2超精細躍遷絕對頻率與超精細結構
★ 銫原子蘭道g值之量測★ 偏頻鎖相超短脈衝雷射以實現銫及銣原子高解析直接光梳光譜
★ 碘分子R(81)29-0 超精譜線用於539.5-nm 雷射穩頻★ 銣原子光鐘絕對頻率之量測
★ 無頻率調制銣原子光鐘之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-24以後開放)
摘要(中) 隨著時代的進步,雷射光學技術發生了快速變化,光梳雷射的發明為光學技術開闢了新的前景。由於光梳雷射具有寬頻、高峰值功率以及窄線寬的性質因此光梳雷射在光譜學上扮演著重要的角色。然而,想將光梳雷射的頻率鎖住,人們往往需要用到一些複雜、敏感的技術,像是頻率鏈技術或是 1f-2f 技術,而這都使得光梳雷射系統既昂貴且嬌弱。
在本篇論文中,我們提供一種不同的方法來鎖住光梳雷射的頻率,那就是只用一個Cs-Rb混合氣室來作為光梳雷射所有參數的頻率參考標準。這個方法可以使光梳雷射系統變的更簡潔與強健。除此之外,我們用簡單的裝置量測銫原子與銣原子的無都普勒背景雙光子躍遷高解析直接光梳光譜,並藉由測量不同條件下銫原子與銣原子的雙光子躍遷頻率來找到影響光梳雷射鎖頻頻率的變因。
摘要(英) With the progress of times, laser optics technology has undergone rapid changes, and the invention of optical comb lasers has opened up new prospects for optical technology. For the reason that comb laser has the properties of broadband, high peak power and narrow linewidth, it plays an important role in spectroscopy. However, in order to lock the frequency of comb laser very well, people often need to use some complex and sensitive technologies, such as the frequency chain method or the 1f-2f method, and these cause the comb laser system expensive and fragile.
In this thesis, we demonstrate a different scheme to lock the frequency of comb laser, which uses only one Cs-Rb mixed gas cell as frequency reference standard for all the parameters of comb laser. This scheme can cause the comb laser system more compact and robust. In addition, we use a simple device to measure the high-resolution direct frequency comb spectrum (DFCS) of the cesium and rubidium two-photon transition (TPT) without Doppler background. Furthermore, by measuring the two-photon transition frequencies of cesium and rubidium atoms under different conditions, the variable factors that affect the frequency of comb laser will be found.
關鍵字(中) ★ 光梳雷射
★ 直接光梳光譜
★ 級聯躍遷
★ 無都普勒效應
★ 雙光子躍遷
★ 混合氣室
關鍵字(英) ★ comb laser
★ direct frequency comb spectroscopy
★ stepwise transition
★ Doppler free
★ two photon transition
★ mixed cell
論文目次 1. Introduction….......................................1
1.0 Forward……………………………………………………………………………………….….……......1
1.1 Comb laser system and frequency measurement……......4
1.2 Doppler free direct frequency comb spectroscopy…...7
1.3 Purpose of experiment and outline of this thesis……11

2. Theoretical discussion…………………………………………………………………………….………...........13
2.1 Atomic energy level……………………………………………………………………………….13
2.1.1 Notation of atomic energy level…………………………………….……13
2.1.2 Fine structure and hyperfine structure…………………………14
2.1.3 Energy levels of cesium and rubidium............16
2.2 Two photon transition…………………………………………………………….……………18
2.2.1 Stepwise two photon transition probability………………18
2.2.2 Two photon transition frequency and linewidth………28
2.2.3 Frequency shift and spectrum broadening………………………33
2.3 Analysis of error signal for stabilizing the frequency of comb laser…………...........................36
2.4 Analysis of spectrum obtained by the phase modulated CW laser [44]…........................................39

3. Experimental setup and system analysis…………………………………45
3.1 Experimental setup…...............................45
3.1.1 Ti:sapphire laser system…………………………………………………………….47
3.1.2 Frequency modulation device………………………………………….....52
3.1.3 Doppler background free device…………………………………………….57
3.1.4 Atomic gas cell and the fluorescence signal……………59
3.1.5 Circular polarization setup………………………………………………………59
3.1.6 Spatial light modulator and autocorrelator………………62
3.1.7 822nm reference laser system……………………………………………..…63
3.2 Stabilize the frequency scanning process…………………………65
3.2.1 Wide range frequency scanning method………………………………67
3.2.2 Measuring the center frequency and linewidth of the spectra…….............................................68
3.3 Schemes to lock the comb laser……………………………………………………70
3.3.1 Signal stability test of cesium and rubidium spectrum…………..........................................70
3.3.2 DFCS frequency locking scheme…..................71
3.3.3 FPGA modulation free frequency locking scheme…..78

4. Results……………………………………………………………………………………………………………...81
4.1 Doppler-free direct atomic comb spectra analysis….81
4.1.1 Atomic cell temperature influence on cesium 6S--8S and rubidium 5S-5D spectrum………………………………..………….........81
4.1.2 Precision measurement of Cs 6S1/2(F=3)-6P3/2(F=3)-8S1/2(F=3) and
(_^87)Rb 5S1/2(F=1)-5P3/2(F=2)-5D5/2(F=3) spectrum……….89
4.2 Peculiar spectrum in comb laser-atom interaction…104
4.2.1 The pit in rubidium 5S-5D spectroscopy…………….………104
4.2.2 The vanished spectrum………………………………………………………………..106
4.2.3 The influence of linear polarization and circular polarization to Cs 6S-8S and Rb 5S-5D TPT DFCS.......108
4.3 Frequency stabilization of comb laser………………………………111
4.3.1 Locking f_ceo of Comb laser directly referenced to atomic TPT DFCS…….……………………...........................111
4.3.2 Frequency locked without referencing to additional time standard (clock)………………….………………………………………………………………112
4.3.3 Frequency locked by using FPGA………………………………………..115

5. Conclusion and future work………………………………………………………………117

6. Appendix………………………………………………………………………………………………………...121
6.1 Principle of comb laser…...............................................121
6.1.1 Mode locked pulsed laser………………………………..………………………121
6.1.2 Methods of mode locking………...........................................125
6.1.3 Dispersion compensation…………………………………………………………….130
6.1.4 Optical frequency comb laser system………………………………136
6.1.5 Characteristics of optical frequency comb laser on the time domain and frequency domain……………………………………………137
6.2 The code of atomic stepwise TPT spectroscopy simulation program…….................................139

7. Reference……………………………………………………………………………………………………...148
參考文獻 [1] J. L. Hall, Nodel lecture: Defining and measuring optical frequencies, Rev. Mod. Phys. 78, 1279 (2006).
[2] T. W. Hänsch, Nobel lecture: Passion for precision, Rev. Mod. Phys. 78, 1297 (2006).
[3] L.-S. Chen and J. Ye, Extensive, high-resolution measurement of hyperfine interactions: Precise investigations of molecular potentials and wave functions, Chem. Phys. Lett. 381, 777 (2003).
[4] A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United Time-Frequency Spectroscopy for Dynamics and Global Structure”, Science 306, 2063 (2004).
[5] V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb”, Opt. Lett. 30, 1734 (2005).
[6] A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet”, Nature (London) 482, 68 (2012).
[7] S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular Fingerprinting With the Resolved Modes of a Femtosecond Laser Frequency Comb”, Nature (London) 445, 627 (2007).
[8] I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs”, Phys. Rev. Lett. 100(1), 013902 (2008).
[9] J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb”, Nat. Photonics 3(2), 99–102 (2009).
[10] Christoph Gohle, Björn Stein, Albert Schliesser, Thomas Udem, and Theodor W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra”, Phys. Rev. Lett. 99, 263902 (2007).
[11] Birgitta Bernhardt, Akira Ozawa, Patrick Jacquet, Marion Jacquey, Yohei Kobayashi, Thomas Udem, Ronald Holzwarth, Guy Guelachvili, Theodor W. Hänsch & Nathalie Picqué, “Cavity-enhanced dual-comb spectroscopy”, Nat. Photon. 4, 55–57 (2010).
[12] B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I.T. Sorokina, N. Picqué, T.W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers”, Applied Physics B, 100, 3-8 (2010).
[13] Itan Barmes, Stefan Witte, and Kjeld S. E. Eikema, “Spatial and Spectral Coherent Control over Direct Frequency Comb Excitation”, Phys. Rev. Lett. 111, 023007 (2013).
[14] David Hayes, D.N. Matsukevich, P. Maunz, D. Hucul, Q. Quraishi, Steven Olmschenk, W.C. Campbell, J. Mizrahi, Crystal Senko, Christopher Monroe, "Entanglement of Atomic Qubits Using an Optical Frequency Comb", Phys. Rev. Lett., 104, 140501 (2010).
[15] Itan Barmes, Stefan Witte, and Kjeld S. E. Eikema, “High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses”, Phys. Rev. Lett. 111, 023007 (2013).
[16] P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fouriertransform spectrometry with frequency combs”, Phys. Rev. A 93(2), 021802 (2016).
[17] I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution”, Opt. Lett. 34(14), 2153–2155 (2009).
[18] I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy”, Optica 3(4), 414–426 (2016).
[19] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff , "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis", Science 288, 635 (2000).
[20] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser", Phys. Rev. Lett. 82, 3568 (1999).
[21] D. Fehrenbacher, P. Sulzer, A. Liehl, T. Kälberer, C. Riek, D. V. Seletskiy, AND A. Leitenstorfer, “Free-running performance and full control of a passively phase-stable Er:fiber frequency comb”, Optica 2(10), 917-923 (2015).
[22] Takuro Ideguchi, Antonin Poisson, Guy Guelachvili, Nathalie Picqué & Theodor W. Hänsch, “Adaptive real-time dual-comb spectroscopy”, Nat Commun 5, 3375 (2014).
[23] C. M. Wu, T. W. Liu, M. H. Wu, R. K. Lee, and W. Y. Cheng, "Absolute frequency of cesium 6S-8S 822-nm two photon transition by a high-resolution scheme", Opt. Lett. 38, 3186 (2013).
[24] Liu, T., Wu, C., Hsu, Y. et al. Dual Ti:sapphire comb lasers by a fiber laser pumping scheme and a hand-sized optical frequency reference. Appl. Phys. B 117, 699–705 (2014).
[25] Jonas Morgenweg, Itan Barmes & Kjeld S. E. Eikema, “Ramsey-comb spectroscopy with intense ultrashort laser pulses”, Nature Physics volume 10, 30–33(2014)
[26] Victor Brasch, Erwan Lucas, John D Jost, Michael Geiselmann, and Tobias J Kippenberg, “Self-referenced photonic chip soliton Kerr frequency comb”, Light Sci Appl. 6(1) (2017).
[27] Guy Millot, Stéphane Pitois, Ming Yan, Tatevik Hovhannisyan, Abdelkrim Bendahmane, Theodor W. Hänsch & Nathalie Picqué, “Frequency-agile dual-comb spectroscopy”, Nature Photonics volume 10, 27–30 (2016).
[28] Haoyuan Lu, Jianxiao Leng and Jianye Zhao, “The Optimization of Cold Rubidium Atom Two photon Transition Excitation with an Erbium-Fiber Optical Frequency Comb”, Appl. Sci. 9(5), 921 (2019).
[29] P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Hänsch, “Two photon frequency comb spectroscopy of the 6?–8? transition in cesium”, Opt. Lett. 32, 6, 701-703 (2007).
[30] Jason E. Stalnaker, Vela Mbele, Vladislav Gerginov, Tara M. Fortier, Scott A. Diddams, Leo Hollberg, and Carol E. Tanner, “Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor”, Phys. Rev. A 81, 043840 (2010).
[31] Bjorkholm J. E. and Liao P. F., ”Line shape and strength of two photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state”, Phys. Rev. A 14, 751 (1976).
[32] Wang L. R., Zhang Y. C., Xiang S. S., Cao S. K., Xiao L. T. and Jia S. T., “Two photon spectrum of 87Rb using optical frequency comb”, Chin. Phys. B 24, 063201 (2015).
[33] Ming-Sheng Ko and Yi-Wei Liu, “Observation of rubidium 5S1/2→7S1/2 two photon transitions with a diode laser”, Opt. Lett. 29, 15, 1799-1801 (2004).
[34] Griffiths, David J., “Introduction to Quantum Mechanics” (2nd ed.). Prentice Hall. (2004).
[35] Alan Corney. Atomic and Laser Spectroscopy. Oxford University Press (1977).
[36] Daniel A. Steck, “Cesium D Line Data,” Oregon Center for Optics and Department of Physics, revision 1.6 (2003).
[37] Daniel Adam Steck, “Rubidium 85 D Line Data,” Oregon Center for Optics and Department of Physics, revision 2.1.4 (2010).
[38] Daniel Adam Steck, “Rubidium 87 D Line Data,” Oregon Center for Optics and Department of Physics, revision 1.6 (2003).
[39] F. Nez, F. Biraben, R. Felder, and Y. Millerioux. Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two photon transitions in rubidium. Optics Communications, (1993).
[40] R. W. Boyd, “Nonlinear Optics”, Academic Press (2003).
[41] K. Shimoda, “High-Resolution Laser Spectroscopy”, Springer (1976).
[42] W. Demtröder, “Laser Spectroscopy: Basic Concepts and Instrumentation”, 4th ed. Springer (2008).
[43] T. Halfmann, T. Rickes, N.V. Vitanov1, and K. Bergmann, "Lineshapes in coherent two photon excitation", Opt. Commun. 220, 353 (2003).
[44] Chien-Ming Wu, Tze-Wei Liu, and Wang-Yau Cheng, “Quantum interference in two photon spectroscopy for laser stabilization and cesium-cell comparison”, Phys. Rev. A 92, 042504 (2015).
[45] D. C. Yost, A. Matveev, E. Peters, A. Beyer, T. W. Hänsch, and Th. Udem, "Quantum interference in two photon frequency-comb spectroscopy", Phys. Rev. A 90, 012512 (2014).
[46] T. H. Yoon, A. Marian, J. L. Hall and J. Ye, "Phase-coherent multilevel two photon transitions in cold Rb atoms: Ultrahigh-resolution spectroscopy via frequency-stabilized femtosecond laser", Phys. Rev. A 63, 011402(R) (2000).
[47] LASER QUANTUM GmbH, GIGAJET TWIN 20c/20c.
[48] E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system”, Rev. Sci. Instrum. 76, 063112 (2005).
[49] Chih-Hao Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator”, Rev. Sci. Instrum. 79, 033104 (2008).
[50] Thorlabs Inc. Model: FGB37, FGL455 and FB420-10.
[51] A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218– 223 (2006).
[52] Photline Inc. Model: NIR-MPX800-LN-10-P-P-FA-FA.
[53] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization Using an Optical Resonator", Appl. Phys. B 31, 97 (1983).
[54] Wang-Yau Cheng, Ting-Ju Chen, Chia-Wei Lin, Bo-Wei Chen, Ya-Po Yang, and Hung Yi Hsu, "Robust sub-millihertz-level offset locking for transferring optical frequency accuracy and for atomic two photon spectroscopy," Opt. Express 25, 2752-2762 (2017).
[55] Chien-Ming Wu, “Optical frequency comb laser system and Cesium 6S-8S two-photon transition spectroscopy”, Ph.D. thesis, National Tsing Hua University (2014).
[56] N. R. Newbury, I. Coddington, and W. C. Swann, "Sensitivity of coherent dual-comb spectroscopy", Opt. Express 18, 7929 (2010), and the references therein.
[57] Svelto, “Principles of Lasers”, 5th ed., Spinger (2010).
[58] D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogeneous laser-part I: theory," IEEE J. Quantum Electron. QE6, 694-708 (1970).
[59] H. W. Mocker and R. J. Collins, "Mode competition and self-locking effects in a Q-switched ruby laser", Appl. Phys. Lett. 7, 270-272 (1965).
[60] D. E. Spence, P. N. Kean, and W. Sibbett, "60 fsec pulse generation by a dispersion-compensated, coupled-cavity, mode-locked Ti:sapphire laser", Opt. Lett. 16, 42-44 (1991).
[61] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics”, 2nd ed., Wiley Interscience (2007).
[62] S. T. Cundiff, J. Ye, and J. L. Hall, "Optical frequency synthesis based on mode-locked lasers", Rev. Sci. Instrum. 72, 3749 (2001).
[63] R. Ramaswami, K. Sivarajan, "Optical Networks: A Practical Perspective", Elsevier Science & Technology Books (1998).
[64] By Emmanuel Boutet - own work, based on en:Image:Self-phase-modulation.png from Bob Mellish, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1861258
[65] R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms", Opt. Lett. 9, 150-152 (1984).
[66] F. Salin, A. Brun, "Dispersion compensation for femtosecond pulses using high index prisms", J. Appl. Phys. 61, 10 (1987).
[67] Sterling Backus, Charles G. Durfee III, Margaret M. Murnane, and Henry C. Kapteyn, "High power ultrafast lasers", Rev. of Sci. Inst. 69, 1207-1223 (1998).
[68] G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics", Science 286, 1507-1512 (1999).
指導教授 鄭王曜(Wang-Yau Cheng) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明