博碩士論文 107222021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:151 、訪客IP:3.12.36.147
姓名 賴培築(Pei-Zhu Lai)  查詢紙本館藏   畢業系所 物理學系
論文名稱 nono
(Jet performance at the Circular electron-positron Collider)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector
★ Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC★ TCAD simulation of silicon detector
★ Assembly and Beam Test Analysis of sPHENIX INTT Detector★ 研究 Dalitz Higgs 的 Muon 效率用於 Run II 和多變量電子用於 CMS 的 Run III
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文旨在量化在未來環形正負電子對撞機(CEPC)上噴流重建表現,一致且高精準度的噴流重建表現將可以在多重噴流末態事例裡,為物理特性的測量提供一個穩固的支撐。噴流事例的重建倚賴於噴流簇團演算法;我們在兩噴流事例,在使用thrust-based演算法後觀察到相較於ee-kt演算法有20%的噴流能量、角度解析度的提升。經過完整的模擬,環形正負電子對撞機上的的微分噴流能量與角度解析度已從91.18和240億電子伏特(GeV)正負電子對撞能量下的所有基準二、四噴流事例中汲取出來。通常來說,相對能量/角度解析度在桶部 (barrel) (|cos?|<0.7)落在大約3-5.5% / 1-2%;對於所有基準二、四噴流事例,這兩個解析度對於角度的依賴都被控制在±1%之間。如果將環形正負電子對撞機上噴流能量解析度與大強子對撞機(LHC)做比較,在重疊的能量區間內(10 < Ej < 30 GeV)的環形正負電子對撞機上噴流能量解析度比大強子對撞機上之偵測器好近5倍之多。根據這些與微分能量、角度、風味依賴的噴流能量相對偏差對於重波色子衰變到噴流末態的質量校正可以達到10萬電子伏特(MeV)精準等級。
摘要(英) We present the jet reconstruction performances at the Circular Electron Positron Collider (CEPC) in this thesis. Consistency of high precision jet responses will provide a concrete support for the physical measurements in multi-jet final- states. The jet responses depend on the jet clustering algorithm, we observed an improvement of 20% of jet energy and angular resolutions with respect to baseline jet clustering algorithm, ee-kt, by using the thrust based algorithm on 2-jet event. The differential jet energy and angular resolutions of the CEPC base- line detector are extracted from benchmark 2/4-jet processes at 91.18 and 240 GeV using fully simulated data. Typically, relative energy/angular resolutions at the barrel region (|cosθ| < 0.7) are 3-5.5%/1-2%, the geometry dependences of both jet reconstructed energy/angular scale are controlled within ±1%, for both 2- and 4-jet events. If compared to the experiments at the LHC, the CPEC base- line detector would have up to 5 times better jet reconstruction resolution in the 10 < Ej < 30 GeV. Base on differential jet angluar, energy, and flavor to apply jet differential energy correction, the uncertainty of the massive boson masses could be calibrated down to 10 MeV precision level.
關鍵字(中) ★ 環形正負電子對撞機
★ 噴流重建
關鍵字(英) ★ CEPC
★ Jet performance
論文目次 1 Introduction
1 1.1 FutureColliders............................. 1
1.1.1 The Production of the Higgs Boson and its Decays . . . . . 4
1.2 Overviews of the Physics Case for CEPC. . . . . . . . . . . . . . . 11
1.3 Jet Reconstruction Performance.................... 21
1.4 W-boson Mass Measurement ..................... 23
2 Experimental Apparatus 31
2.1 The Baseline Conceptual Detector................... 31
2.2 Event Simulation ............................ 46
2.3 Event Reconstruction.......................... 48
2.3.1 Tracking Performance ..................... 48
2.3.2 Particle-FlowAlgorithm, Arbor................ 51
2.3.3 Jet Clustering Algorithm.................... 55
2.4 Object Reconstruction ......................... 58
2.4.1 Leptons ............................. 58
2.4.2 Photons ............................. 62
2.4.3 Tau Leptons........................... 64
2.4.4 Jet Flavor Tagging ....................... 64
2.4.5 Missing Energy, Momenta, andMass . . . . . . . . . . . . 67
2.4.6 Charged Kaon Identification ................. 67
3 Methodology of Measurement of the Jet Energy/Angular Resolution and Scale
4 Results 75
4.1 Baseline Differential Jet Energy/Angular Resolution and Scale . . 75 4.1.1 Differential Jet Energy Resolution and Scale . . . . . . . . 75
4.1.2 Differential Jet Angular Resolution and Scale . . . . . . . . 80
4.2 Thrust Differential Jet Energy/Angular Resolution and Scale . . . 82 4.2.1 Differential Jet Energy Resolution and Scale . . . . . . . . 82
4.2.2 Differential Jet Angular Resolution and Scale . . . . . . . . 84
4.3 BosonMassResolutionandScale................... 85
4.3.1 BosonMassResolution .................... 85
4.3.2 W-bosonMassMeasurement ................. 88
4.4 Diboson Full Hadronic Final State Separation . . . . . . . . . . . . 95
5 Conclusion 101
A Collecting Efficiency 103
A.1 EffectiveCrossSection ......................... 104
A.2 Each Visible Particle Angular Distributions . . . . . . . . . . . . . 107
A.3 Particle Collecting Efficiency...................... 110
A.4 Energy Collecting Efficiency...................... 111
A.5 Significance of BenchmarkZ(→νν)H ................ 112
B Kinematic Distribution 115
B.1 TwoJetsEvents ............................ 119
B.2 FourJetsEvents ............................ 135
C Cleaned Selection 147
D Additional materials for the matching study 155
D.1 Two Jets Events ............................. 156
D.2 Four Jets Events............................. 162
E Additional Materials for the JER/JAR/JES/JAS 181
E.1 JAR/S,ee-kt............................... 182
E.2 JAR/S,Thrust .............................. 188
E.3 JER/S,ee-kt ............................... 194
E.4 JER/S,Thrust .............................. 197
F B-jet Energy Regression 201
F.1 Training Variable of Leading Jet.................... 202
F.2 Training Variable of Sub-leading Jet ................. 204
F.3 Validation ................................ 206
Bibliography ........................... 209
參考文獻 [1] G. Aad and et al. “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”. In: Physics Letters B 716.1 (2012), 1–29. ISSN: 0370-2693. DOI: 10.1016/j. physletb.2012.08.020. URL: http://dx.doi.org/10.1016/j. physletb.2012.08.020.
[2] G. Aad and et al. “Evidence for the spin-0 nature of the Higgs boson using ATLAS data”. In: Physics Letters B 726.1-3 (2013), 120–144. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2013.08.026. URL: http: //dx.doi.org/10.1016/j.physletb.2013.08.026.
[3] S. Chatrchyan and et al. “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”. In: Physics Letters B 716.1 (2012), 30–61. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2012.08. 021. URL: http://dx.doi.org/10.1016/j.physletb.2012.08. 021.
[4] S. Chatrchyan and et al. “Observation of a new boson with mass near 125 GeV in pp collisions at √s=7 and 8 TeV”. In: Journal of High Energy Physics 2013.6 (2013). ISSN: 1029-8479. DOI: 10.1007/jhep06(2013)081. URL: http://dx.doi.org/10.1007/JHEP06(2013)081.
[5] V. Khachatryan and et al. “Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV”. In: The European Physical Journal C 75.5 (2015). ISSN: 1434-6052. DOI: 10.1140/epjc/ s10052-015-3351-7. URL: http://dx.doi.org/10.1140/epjc/ s10052-015-3351-7.
[6] G. Aad and et al. “Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √s = 7 and 8 TeV in the ATLAS experiment”. In: The European Physical Journal C 76.1 (2016). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-015-3769-y. URL: http://dx.doi.org/10.1140/epjc/s10052-015-3769-y.
[7] G. Aad and et al. “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV”. In: Journal of High Energy Physics 2016.8 (2016). ISSN: 1029-8479. DOI: 10.1007/jhep08(2016)045. URL: http://dx.doi.org/10.1007/ JHEP08(2016)045.
[8] The CEPC Study Group. CEPC Conceptual Design Report: Volume 2 - Physics and Detector. 2018. arXiv: 1811.10545 [hep-ex].
[9] ATLAS Collaboration. Physics at a High-Luminosity LHC with ATLAS. 2013. arXiv: 1307.7292 [hep-ex].
[10] CMS Collaboration. Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process. 2013. arXiv: 1307.7135 [hep-ex].
[11] Nicolò Cartiglia. Measurement of the proton-proton total, elastic, inelastic and diffractive cross sections at 2, 7, 8 and 57 TeV. 2013. arXiv: 1305 . 6131 [hep-ex].
[12] Zhen Liu, Lian-Tao Wang, and Hao Zhang. “Exotic decays of the 125 GeV Higgs boson at future e+e− colliders”. In: Chinese Physics C 41.6 (2017), p. 063102. ISSN: 1674-1137. DOI: 10.1088/1674-1137/41/6/063102. URL: http://dx.doi.org/10.1088/1674-1137/41/6/063102.
[13] Kilian. and et al. “WHIZARD—simulating multi-particle processes at LHC and ILC”. In: The European Physical Journal C 71.9 (2011). ISSN: 1434- 6052. DOI: 10.1140/epjc/s10052-011-1742-y. URL: http://dx. doi.org/10.1140/epjc/s10052-011-1742-y.
[14] C. M. Carloni Calame et al. The BABAYAGA event generator. 2003. arXiv: hep-ph/0312014 [hep-ph].
[15] LHC Higgs Cross Section Working Group et al. Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables. 2011. arXiv: 1101.0593 [hep-ph].
[16] LHC Higgs Cross Section Working Group et al. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions. 2012. arXiv: 1201 . 3084 [hep-ph].
[17] The LHC Higgs Cross Section Working Group et al. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. 2013. arXiv: 1307 . 1347 [hep-ph].
[18] P. Glaysher. ATLAS Higgs physics prospects at the high luminosity LHC. 2015.
[19] S. Dawson et al. Higgs Working Group Report of the Snowmass 2013 Com- munity Planning Study. 2013. arXiv: 1310.8361 [hep-ex].
[20] Dario Buttazzo et al. “Investigating the near-criticality of the Higgs bo- son”. In: Journal of High Energy Physics 2013.12 (2013). ISSN: 1029-8479. DOI: 10.1007/jhep12(2013)089. URL: http://dx.doi.org/10. 1007/JHEP12(2013)089.
[21] Xinmin Zhang. “Operator analysis for the Higgs potential and cosmolog- ical bound on the Higgs-boson mass”. In: Physical Review D 47.7 (1993), 3065–3067. ISSN: 0556-2821. DOI: 10.1103/physrevd.47.3065. URL: http://dx.doi.org/10.1103/PhysRevD.47.3065.
[22] Christophe Grojean, Géraldine Servant, and James D. Wells. “First-order electroweak phase transition in the standard model with a low cut- off”. In: Physical Review D 71.3 (2005). ISSN: 1550-2368. DOI: 10.1103/ physrevd.71.036001. URL: http://dx.doi.org/10.1103/ PhysRevD.71.036001.
[23] Cédric Delaunay, Christophe Grojean, and James D Wells. “Dynamics of non-renormalizable electroweak symmetry breaking”. In: Journal of High Energy Physics 2008.04 (2008), 029–029. ISSN: 1029-8479. DOI: 10.1088/ 1126-6708/2008/04/029. URL: http://dx.doi.org/10.1088/ 1126-6708/2008/04/029.
[24] Qing-Hong Cao et al. “Testing the electroweak phase transition in scalar extension models at lepton colliders”. In: Chinese Physics C 42.2 (2018), p. 023103. ISSN: 1674-1137. DOI: 10.1088/1674-1137/42/2/023103. URL: http://dx.doi.org/10.1088/1674-1137/42/2/023103.
[25] Fa Peng Huang et al. “Testing the electroweak phase transition and elec- troweak baryogenesis at the LHC and a circular electron-positron col- lider”. In: Physical Review D 93.10 (2016). ISSN: 2470-0029. DOI: 10.1103/ physrevd.93.103515. URL: http://dx.doi.org/10.1103/ PhysRevD.93.103515.
[26] Fa Peng Huang et al. “Hearing the echoes of electroweak baryogene- sis with gravitational wave detectors”. In: Physical Review D 94.4 (2016). ISSN: 2470-0029. DOI: 10.1103/physrevd.94.041702. URL: http: //dx.doi.org/10.1103/PhysRevD.94.041702.
[27] Sidney Coleman and Erick Weinberg. “Radiative Corrections as the Ori- gin of Spontaneous Symmetry Breaking”. In: Phys. Rev. D 7 (6 1973), pp. 1888–1910. DOI: 10.1103/PhysRevD.7.1888. URL: https:// link.aps.org/doi/10.1103/PhysRevD.7.1888.
[28] José Ramón Espinosa and Mariano Quirós. “Novel effects in electroweak breaking from a hidden sector”. In: Physical Review D 76.7 (2007). ISSN: 1550-2368. DOI: 10.1103/physrevd.76.076004. URL: http://dx. doi.org/10.1103/PhysRevD.76.076004.
[29] K.A. Olive. “Review of Particle Physics”. In: Chinese Physics C 40.10 (2016), p. 100001. DOI: 10.1088/1674-1137/40/10/100001. URL: https : / / doi . org / 10 . 1088 % 2F1674 - 1137 % 2F40 % 2F10 % 2F100001.
[30] R Ofierzynski. “W boson mass and properties at LEP”. In: Journal of Physics: Conference Series 110.4 (2008), p. 042019. DOI: 10.1088/1742- 6596/110/4/042019. URL: https://doi.org/10.1088%2F1742- 6596%2F110%2F4%2F042019.
[31] Massimo Caccia. “Measurements of Rb and Rc at LEP”. In: Nuclear Physics B - Proceedings Supplements 75.3 (1999), pp. 246 –252. ISSN: 0920- 5632. DOI: https://doi.org/10.1016/S0920-5632(99)00360-6. URL: http://www.sciencedirect.com/science/article/pii/ S0920563299003606.
[32] G. Gounaris. and et al. Triple Gauge Boson Couplings. 1996. arXiv: hep- ph/9601233 [hep-ph].
[33] A. Heister et al. “Measurement of triple gauge-boson couplings at LEP energies up to 189 GeV”. In: The European Physical Journal C 21.3 (2001), 423–441. ISSN: 1434-6052. DOI: 10.1007/s100520100730. URL: http: //dx.doi.org/10.1007/s100520100730.
[34] M. Diehl and O. Nachtmann. “Optimal observables for the measurement of three gauge boson couplings in e+ e- —> W+ W-”. In: Z. Phys. C 62 (1994), pp. 397–412. DOI: 10.1007/BF01555899.
[35] CMS Collaboration. Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at √s = 13 TeV. 2018. arXiv: 1807.05974 [hep-ex].
[36] P Abreu and et al. “Measurement of the triple-gluon vertex from 4-jet events at Lep”. In: (Jan. 1993).
[37] Hang Zhao. and et al. “The Higgs signatures at the CEPC CDR baseline”. In: Chinese Physics C 43.2 (2019), p. 023001. DOI: 10.1088/1674-1137/ 43/2/023001. URL: https://doi.org/10.1088%2F1674-1137% 2F43%2F2%2F023001.
[38] Cacciari. and et al. “FastJet user manual”. In: The European Physical Journal C 72.3 (2012). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-012- 1896-2. URL: http://dx.doi.org/10.1140/epjc/s10052-012- 1896-2.
[39] A. Ali and G. Kramer. “JETS and QCD: a historical review of the discov- ery of the quark and gluon jets and its impact on QCD”. In: The European Physical Journal H 36.2 (2011), 245–326. ISSN: 2102-6467. DOI: 10.1140/ epjh/e2011-10047-1. URL: http://dx.doi.org/10.1140/ epjh/e2011-10047-1.
[40] Sheldon L. Glashow. “Partial-symmetries of weak interactions”. In: Nu- clear Physics 22.4 (1961), pp. 579 –588. ISSN: 0029-5582. DOI: https : //doi.org/10.1016/0029-5582(61)90469-2. URL: http : / / www . sciencedirect . com / science / article / pii / 0029558261904692.
[41] A. Salam and J.C. Ward. “Electromagnetic and weak interactions”. In: Physics Letters 13.2 (1964), pp. 168 –171. ISSN: 0031-9163. DOI: https: //doi.org/10.1016/0031-9163(64)90711-5. URL: http : / / www . sciencedirect . com / science / article / pii / 0031916364907115.
[42] Steven Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett. 19 (21 1967), pp. 1264–1266. DOI: 10.1103/PhysRevLett.19.1264. URL: https: //link.aps.org/doi/10.1103/PhysRevLett.19.1264.
[43] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vector Mesons”. In: Phys. Rev. Lett. 13 (9 1964), pp. 321–323. DOI: 10.1103/ PhysRevLett.13.321. URL: https://link.aps.org/doi/10. 1103/PhysRevLett.13.321.
[44] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”. In: Phys. Rev. Lett. 13 (16 1964), pp. 508–509. DOI: 10 . 1103 / PhysRevLett.13.508. URL: https://link.aps.org/doi/10. 1103/PhysRevLett.13.508.
[45] P.W. Higgs. “Broken symmetries, massless particles and gauge fields”. In: Physics Letters 12.2 (1964), pp. 132 –133. ISSN: 0031-9163. DOI: https: //doi.org/10.1016/0031-9163(64)91136-9. URL: http : / / www . sciencedirect . com / science / article / pii / 0031916364911369.
[46] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. “Global Conservation Laws and Massless Particles”. In: Phys. Rev. Lett. 13 (20 1964), pp. 585– 587. DOI: 10.1103/PhysRevLett.13.585. URL: https://link. aps.org/doi/10.1103/PhysRevLett.13.585.
[47] G. Arnison and et.al. “Experimental observation of isolated large trans- verse energy electrons with associated missing energy at s=540 GeV”. In: Physics Letters B 122.1 (1983), pp. 103 –116. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(83)91177-2. URL:http : / / www . sciencedirect . com / science / article / pii / 0370269383911772.
[48] G. Arnison and et.al. “Experimental observation of lepton pairs of in- variant mass around 95 GeV/c2 at the CERN SPS collider”. In: Physics Letters B 126.5 (1983), pp. 398 –410. ISSN: 0370-2693. DOI: https : //doi.org/10.1016/0370-2693(83)90188-0. URL: http : / / www . sciencedirect . com / science / article / pii / 0370269383901880.
[49] M. Banner and et.al. “Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN pp collider”. In: Physics Letters B 122.5 (1983), pp. 476 –485. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(83) 91605-2. URL: http://www.sciencedirect.com/science/ article/pii/0370269383916052.
[50] M. Awramik et al. “Precise prediction for the W-boson mass in the stan- dard model”. In: Phys. Rev. D 69 (5 2004), p. 053006. DOI: 10.1103/ PhysRevD.69.053006. URL: https://link.aps.org/doi/10. 1103/PhysRevD.69.053006.
[51] A. Sirlin. “Radiative corrections in the SU(2)L × U(1) theory: A simple renormalization framework”. In: Phys. Rev. D 22 (4 1980), pp. 971–981. DOI: 10.1103/PhysRevD.22.971. URL: https://link.aps.org/ doi/10.1103/PhysRevD.22.971.
[52] M. Baak et al. “The global electroweak fit at NNLO and prospects for the LHC and ILC”. In: The European Physical Journal C 74.9 (2014). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-014-3046-5. URL: http: //dx.doi.org/10.1140/epjc/s10052-014-3046-5.
[53] G Arnison and et.al. “Intermediate-Vector-Boson Properties at the CERN Super Proton Synchrotron Collider”. In: Europhysics Letters (EPL) 1.7 (1986), pp. 327–345. DOI: 10 . 1209 / 0295 - 5075 / 1 / 7 / 002. URL: https://doi.org/10.1209%2F0295-5075%2F1%2F7%2F002.
[54] J. Alitti and et.al. “An improved determination of the ratio of W and Z masses at the CERN pp collider”. In: Physics Letters B 276.3 (1992), pp. 354 –364. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370- 2693(92)90332-X. URL: http://www.sciencedirect.com/ science/article/pii/037026939290332X.
[55] T. Affolder et al. “Measurement of the W boson mass with the Collider Detector at Fermilab”. In: Physical Review D 64.5 (2001). ISSN: 1089-4918. DOI: 10.1103/physrevd.64.052001. URL: http://dx.doi.org/ 10.1103/PhysRevD.64.052001.
[56] V. M. Abazov et al. “ImprovedWboson mass measurement with the DØ detector”. In: Physical Review D 66.1 (2002). ISSN: 1089-4918. DOI: 10. 1103/physrevd.66.012001. URL: http://dx.doi.org/10. 1103/PhysRevD.66.012001.
[57] V. M. Abazov et al. “Combination of CDF and D0 results on theWboson mass and width”. In: Physical Review D 70.9 (2004). ISSN: 1550-2368. DOI: 10.1103/physrevd.70.092008. URL: http://dx.doi.org/10. 1103/PhysRevD.70.092008.
[58] T. Aaltonen et al. “Precise Measurement of theW-Boson Mass with the CDF II Detector”. In: Physical Review Letters 108.15 (2012). ISSN: 1079-7114. DOI: 10.1103/physrevlett.108.151803. URL: http://dx.doi. org/10.1103/PhysRevLett.108.151803.
[59] V. M. Abazov et al. “Measurement of theWBoson Mass with the D0 De- tector”. In: Physical Review Letters 108.15 (2012). ISSN: 1079-7114. DOI: 10. 1103/physrevlett.108.151804. URL: http://dx.doi.org/10. 1103/PhysRevLett.108.151804.
[60] T. Aaltonen et al. “Combination of CDF and D0W-Boson mass measure- ments”. In: Physical Review D 88.5 (2013). ISSN: 1550-2368. DOI: 10.1103/ physrevd.88.052018. URL: http://dx.doi.org/10.1103/ PhysRevD.88.052018.
[61] S. Schael et al. “Measurement of the W boson mass and width in e+e- collisions at LEP”. In: The European Physical Journal C 47.2 (2006), 309–335. ISSN: 1434-6052. DOI: 10.1140/epjc/s2006-02576-8. URL: http: //dx.doi.org/10.1140/epjc/s2006-02576-8.
[62] J. Abdallah et al. “Measurement of the mass and width of the W boson in e+e- collisions at √s = 161–209 GeV”. In: The European Physical Journal C 55.1 (2008). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-008-0585- 7. URL: http://dx.doi.org/10.1140/epjc/s10052-008-0585- 7.
[63] “Measurement of the mass and the width of the W boson at LEP”. In: The European Physical Journal C 45.3 (2006), 569–587. ISSN: 1434-6052. DOI: 10.1140/epjc/s2005-02459-6. URL: http://dx.doi.org/10. 1140/epjc/s2005-02459-6.
[64] G. Abbiendi. “Measurement of the mass and width of the W boson”. In: The European Physical Journal C 45.2 (2005), 307–335. ISSN: 1434-6052. DOI: 10.1140/epjc/s2005-02440-5. URL: http://dx.doi.org/10. 1140/epjc/s2005-02440-5.
[65] M. Aaboud et al. “Measurement of the W-boson mass in pp collisions at √s = 7 TeV with the ATLAS detector”. In: The European Physical Journal C 78.2 (2018). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-017-5475- 4. URL: http://dx.doi.org/10.1140/epjc/s10052-017-5475- 4.
[66] J. de Blas et al. “Electroweak precision observables and Higgs-boson sig- nal strengths in the Standard Model and beyond: present and future”. In: Journal of High Energy Physics 2016.12 (2016). ISSN: 1029-8479. DOI: 10.1007/jhep12(2016)135. URL: http://dx.doi.org/10. 1007/JHEP12(2016)135.
[67] M. Aaboud et al. “Measurement of the top quark mass in the tt¬dileptonchannel froms=8 TeVATLAS data”. In: Physics Letters B 761 (2016), 350–371. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2016. 08.042. URL: http://dx.doi.org/10.1016/j.physletb.2016. 08.042.
[68] G. Aad et al. “Combined Measurement of the Higgs Boson Mass inpp- Collisions ats=7and 8 TeV with the ATLAS and CMS Experiments”. In: Physical Review Letters 114.19 (2015). ISSN: 1079-7114. DOI: 10.1103/ physrevlett.114.191803. URL: http://dx.doi.org/10.1103/ PhysRevLett.114.191803.
[69] M. Aaboud et al. “Precision measurement and interpretation of inclusive W +, W −, and Z / γ∗ production cross sections with the ATLAS detector”. In: The European Physical Journal C 77.6 (2017). ISSN: 1434-6052. DOI: 10. 1140/epjc/s10052-017-4911-9. URL: http://dx.doi.org/10. 1140/epjc/s10052-017-4911-9.
[70] J-C. Brient and H. Videau. The calorimetry at the future e+ e- linear collider. 2002. arXiv: hep-ex/0202004 [hep-ex].
[71] Felix Sefkow et al. “Experimental tests of particle flow calorimetry”. In: Reviews of Modern Physics 88.1 (2016). ISSN: 1539-0756. DOI: 10.1103/ revmodphys.88.015003. URL: http://dx.doi.org/10.1103/ RevModPhys.88.015003.
[72] Arabella Martelli. The CMS HGCAL detector for HL-LHC upgrade. 2017. arXiv: 1708.08234 [physics.ins-det].
[73] H.Qi. Status and progress of TPC module and prototype R&D for CEPC. 2017.
[74] M. Zhao et al. “Feasibility study of TPC at electron positron col- liders atZpole operation”. In: Journal of Instrumentation 12.07 (2017), P07005–P07005. ISSN: 1748-0221. DOI: 10.1088/1748-0221/12/07/ p07005. URL: http://dx.doi.org/10.1088/1748-0221/12/07/ P07005.
[75] Manqi Ruan et al. “Fractal Dimension of Particle Showers Measured in a Highly Granular Calorimeter”. In: Physical Review Letters 112.1 (2014). ISSN: 1079-7114. DOI: 10.1103/physrevlett.112.012001. URL: http://dx.doi.org/10.1103/PhysRevLett.112.012001.
[76] Dan Yu et al. “Lepton identification at particle flow oriented detector for the future e+e− Higgs factories”. In: The European Physical Journal C 77.9 (2017). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-017-5146-5. URL: http://dx.doi.org/10.1140/epjc/s10052-017-5146-5.
[77] H. Zhao et al. “Particle flow oriented electromagnetic calorimeter opti- mization for the circular electron positron collider”. In: Journal of Instru- mentation 13.03 (2018), P03010–P03010. ISSN: 1748-0221. DOI: 10.1088/ 1748-0221/13/03/p03010. URL: http://dx.doi.org/10.1088/ 1748-0221/13/03/P03010.
[78] BESIII Superconducting Magnet Group. “Concept Design Report of the BESIII Superconducting Magnet”. In: (2002).
[79] The CMS magnet project: Technical Design Report. Technical Design Report CMS. Geneva: CERN, 1997. URL: https://cds.cern.ch/record/ 331056.
[80] Ties Behnke et al. The International Linear Collider Technical Design Report - Volume 4: Detectors. 2013. arXiv: 1306.6329 [physics.ins-det].
[81] B. Aubert et al. “The BABAR detector”. In: Nuclear Instruments and Meth- ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 479.1 (2002), 1–116. ISSN: 0168-9002. DOI: 10.1016/ s0168-9002(01)02012-5. URL: http://dx.doi.org/10.1016/ S0168-9002(01)02012-5.
[82] A. Abashian and et. al. “The Belle detector”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 479.1 (2002). Detectors for Asym- metric B-factories, pp. 117 –232. ISSN: 0168-9002. DOI: https : / / doi.org/10.1016/S0168-9002(01)02013-7. URL: http: / / www . sciencedirect . com / science / article / pii / S0168900201020137.
[83] J. G. Layter. The CMS muon project: Technical Design Report. Technical De- sign Report CMS. Geneva: CERN, 1997. URL: http://cds.cern.ch/ record/343814.
[84] ATLAS muon spectrometer: Technical Design Report. Technical Design Re- port ATLAS. Geneva: CERN, 1997. URL: http://cds.cern.ch/ record/331068.
[85] M. Ablikim et al. “Design and construction of the BESIII detector”. In:
Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 614 (Mar. 2010), pp. 345– 399. DOI: 10.1016/j.nima.2009.12.050.
[86] Ji-Lei Xu et al. “Design and preliminary test results of Daya Bay RPC modules”. In: Chinese Physics C 35.9 (2011), pp. 844–850. DOI: 10.1088/ 1674-1137/35/9/011. URL: https://doi.org/10.1088% 2F1674-1137%2F35%2F9%2F011.
[87] Mauro Moretti. and et al. O’Mega: An Optimizing Matrix Element Genera- tor. 2001. arXiv: hep-ph/0102195 [hep-ph].
[88] Sjöstrand. and et al. “An introduction to PYTHIA 8.2”. In: Computer Physics Communications 191 (2015), 159–177. ISSN: 0010-4655. DOI: 10. 1016/j.cpc.2015.01.024. URL: http://dx.doi.org/10.1016/ j.cpc.2015.01.024.
[89] S. Agostinelli et al. “GEANT4: A Simulation toolkit”. In: Nucl. Instrum. Meth. A506 (2003), pp. 250–303. DOI: 10 . 1016 / S0168 - 9002(03 ) 01368-8.
[90] Manqi Ruan. Arbor, a new approach of the Particle Flow Algorithm. 2014. arXiv: 1403.4784 [physics.ins-det].
[91] A. Hoecker. and et al. TMVA - Toolkit for Multivariate Data Analysis. 2007. arXiv: physics/0703039 [physics.data-an].
[92] Suehara. and et al. “LCFIPlus: A framework for jet analysis in linear col- lider studies”. In: Nuclear Instruments and Methods in Physics Research Sec- tion A: Accelerators, Spectrometers, Detectors and Associated Equipment 808 (2016), 109–116. ISSN: 0168-9002. DOI: 10.1016/j.nima.2015.11. 054. URL: http://dx.doi.org/10.1016/j.nima.2015.11.054.
[93] Frank Gaede et al. “Track reconstruction at the ILC: the ILD tracking soft- ware”. In: Journal of Physics: Conference Series 513.2 (2014), p. 022011. DOI: 10.1088/1742-6596/513/2/022011. URL: https://doi.org/ 10.1088%2F1742-6596%2F513%2F2%2F022011.
[94] Manqi. Ruan and et al. “Reconstruction of physics objects at the Circu- lar Electron Positron Collider with Arbor”. In: Eur. Phys. J. C 78.5 (2018), p. 426. DOI: 10.1140/epjc/s10052-018-5876-z. URL: https: //doi.org/10.1140/epjc/s10052-018-5876-z.
[95] Dokshitzer. and et al. “Better jet clustering algorithms”. In: Journal of High Energy Physics 1997.08 (1997), 001–001. ISSN: 1029-8479. DOI: 10.1088/ 1126-6708/1997/08/001. URL: http://dx.doi.org/10.1088/ 1126-6708/1997/08/001.
[96] S. Catani. and et al. “Longitudinally-invariant kt-clustering algorithms for hadron-hadron collisions”. In: Nuclear Physics B 406.1 (1993), pp. 187 –224. ISSN: 0550-3213. DOI: https://doi.org/10.1016/0550- 3213(93)90166-M. URL: http://www.sciencedirect.com/ science/article/pii/055032139390166M.
[97] S. Brandt and et al. “The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes”. In: Phys. Lett. 12 (1964), pp. 57–61. DOI: 10.1016/0031-9163(64)91176-X.
[98] Edward Farhi. “Quantum Chromodynamics Test for Jets”. In: Phys. Rev. Lett. 39 (25 1977), pp. 1587–1588. DOI: 10 . 1103 / PhysRevLett . 39.1587. URL: https://link.aps.org/doi/10.1103/ PhysRevLett.39.1587.
[99] G. Abbiendi and et al. “Measurement of the b quark forward–backward asymmetry around the Z0 peak using an inclusive tag”. In: Physics Let- ters B 546.1-2 (2002), 29–47. ISSN: 0370-2693. DOI: 10.1016/s0370- 2693(02)02594-7. URL: http://dx.doi.org/10.1016/S0370- 2693(02)02594-7.
[100] M. Aaboud and et al. “Jet reconstruction and performance using particle flow with the ATLAS Detector”. In: The European Physical Journal C 77.7 (2017). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-017-5031-2. URL: http://dx.doi.org/10.1140/epjc/s10052-017-5031-2.
[101] Florian Beaudette. The CMS Particle Flow Algorithm. 2014. arXiv: 1401. 8155 [hep-ex].
[102] Manqi Ruan et al. “Fractal Dimension of Particle Showers Measured in a Highly Granular Calorimeter”. In: Phys. Rev. Lett. 112 (1 2014), p. 012001. DOI: 10.1103/PhysRevLett.112.012001. URL: https://link. aps.org/doi/10.1103/PhysRevLett.112.012001.
[103] V. Khachatryan and et al. “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”. In: Journal of Instrumentation 12.02 (2017), P02014–P02014. ISSN: 1748-0221. DOI: 10.1088/1748-0221/ 12/02/p02014. URL: http://dx.doi.org/10.1088/1748- 0221/12/02/P02014.
指導教授 郭家銘(Chia-Ming Kuo) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明