參考文獻 |
[1] 王智薇,「淺談新興能源科技產業─氫能與燃料電池」,產經資訊,2008。
[2] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals”, John Wiley & Sons, 2005.
[3] 黃鎮江,「燃料電池」,全華科技股份有限公司,2005。
[4] 趙中興,「燃料電池基礎」,全華圖書 ,2008 。
[5] Y Wang, K S. Chen, J Mishler, S C Cho, X C Adroher, “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research”, Appl. Energy, 88, pp. 981 1007, 2011.
[6] L. Xiong, A. Manthiram, “High Performance Membrane Electrode Assemblies with Ultra-Low Pt Loading for Proton Exchange Membrane Fuel Cells”, Electrochim. Acta, Vol. 50, pp. 3200 3204, 2005.
[7] H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst sprayed membrane technique”, J. Power Sources, 195 , 756-761, 2010.
[8] http://www.toray eng.com/lcd/coater/lineup/esc.html
[9] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process”, J. Electrochem. Soc., Vol. 151, pp. 1733-1737, 2004.
[10] F. F. Onana, N. Guillet, A. M. AlMayouf, “Modifed Pulse Electrodeposition of Pt Nanocatalyst as High-Performance Electrode for PEMFC”, J. Power Sources, Vol. 271, pp. 401-405, 2014.
[11] H. Kim, N.P. Subramanian, B.N.71 Popov, “Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition”, J. Power Sources, Vol. 138, pp. 14-24, 2004.
[12] S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside Fuel Cell Electrodes Using High Power Impulse Magnetron Sputtering”, J. Phys. D: Appl. Phys., Vol. 47, pp. 272001, 2014.
[13] M. S. Cogenli, S. Mukerjee, A. B. Yurtcan, “Membrane Electrode Assembly with Ultralow Platinum Loading for Cathode Electrode of PEM Fuel Cell by Using Sputter Deposition”, Fuel Cells, Vol. 15, pp. 288-297, 2015.
[14] A. Khan, B. K. Nath, J. Chutia, “Nanopillar Structured Platinum with Enhanced Catalytic Utilization for Electrochemical Reactions in PEMFC”, Electrochim. Acta, Vol. 146, pp. 171-177, 2014.
[15] M.S. Saha, A.F. Gull´, R.J. Allen, S. Mukerjee, “High Performance Polymer Electrolyte Fuel Cells with Ultra-Low Pt Loading Electrodesprepared by Dual Ion-Beam Assisted Deposition”, Electrochim. Acta, Vol. 51, pp. 4680-4692, 2006.
[16] https://www.itrc.narl.org.tw/Bulletin/News/ald.php
[17] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diusion Layer Using an Atomic Layer Deposition Technique”, Electrochim. Acta, Vol. 177, pp. 168-173, 2015.
[18] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt Loadings Using Pulsed Laser Deposition”, Electrochem. Solid-State Lett., Vol. 6, pp. 125-128, 2003.
[19] H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol. 6, pp. 180, 2016.
[20] T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, C. J. Tseng , “Production of High-Performance and Improved-Durability Pt-Catalyst/Support for Proton-Exchange-Membrane Fuel Cells with Pulsed Laser Deposition”, J. Phys. D Appl. Phys., Vol. 49, pp. 255601, 2016.
[21] H. Xu, E. Brosha, F. Garzon, F. Uribe, M. Wilson, B. Pivovar, “The Effect of Electrode Ink Processing and Composition Catalyst Utilization” ECS Trans., Vol. 11, pp. 383–391, 2007.
[22] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, “Proton Exchange Membrane Fuel Cells with Carbon Nanotube based Electrodes”, Nano Lett., Vol. 4,pp. 345–348, 2004.
[23] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., Vol. 6, pp. 125-128, 2003.
[24] W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-Low-Loading Pulsed-Laser-Deposited Platinum Catalyst Films for Polymer Electrolyte Membrane Fuel Cells”, J. Power Sources, Vol. 273, pp. 885-893, 2015.
[25] A. Brouzgou, S. Q. Song,P. Tsiakaras, “Low and Non-Platinum Electrocatalysts for PEMFCs: Current Status, Challenges and Prospects”, Applied Catalysis B: Environmental, Vol. 127, pp. 371-388, 2012.
[26] S. M. Haile, “Fuel Cell Material and Components”, Acta Materialia, Vol. 51, pp. 5981-6000, 2003.
[27] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X.C. Adronher. “A Review of Polymer Electrolyte Membrane Fuel Cells:Technology, Applications and Needs on Fundamental Research”, Applied Energy, Vol, 88, pp. 981-1007, 2011.
[28] http://www.goldgold168.com/palladium.php#.WyjZR1X-jRY
[29] U.S. Department of Energy, “Fuel Cell System Cost”, 2017.
[30] Y. F. Zhai, H. Zhang, D.Xing, Z. G. Shao, “The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test”, J. Power Sources, Vol. 164, pp. 126-133, 2007.
[31] J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, “A Review of PEM Fuel Cell Durability:Degradation Mechanisms and Mitigation Strategies”, J. Power Sources, Vol. 184, pp. 104-119, 2008.
[32] 林冠任,「利用脈衝雷射沉積技術成長PEMFC鉑奈米顆粒觸媒」,國立中央大學,碩士論文,2015年。
[33] 黃亭維,「應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層」,國立中央大學,碩士論文,2016年。
[34] 敖昱弘,「應用雷射材料製程技術於製備Pt3Co奈米結構陰極觸媒層以提升質子交換膜燃料電池性能」,國立中央大學,碩士論文,2019年。
[35] O.J. Murphy, A. Cisar, E. Clarke, “Low-cost light weight high power density PEM fuel cell stack”, Elsevier Science, Vol. 43, pp. 3829-3840, 1998.
[36] J.L. Jespersen, E. Schaltzb, S.K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, Journal Power Sources, Vol. 191, pp. 289-296, 2009.
[37] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell” , Journal of Power Source, Vol. 80, pp. 226-234, 1999.
[38] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions”, Journal of Power Sources, Vol. 128, pp. 208-217, 2004.
[39] W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells”, Journal of Power Sources, Vol. 180, pp. 1-14, 2008.
[40] J.J. Hwang, G.J. Hwang, R.H. Yeh, C.H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams”, Journal Heat Transfer, Vol. 124, pp. 120-129, 2002.
[41] M. Medraj, E. Baril, V. Loya, L.P. Lefebvre, “The effect of microstructure on the permeability of metallic foams”, Journal of Material Science, Vol. 42, pp. 4372-4383, 2007.
[42] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang and S.K. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[43] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang and S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor”, International Journal of Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[44] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 295, pp. 275-291, 2015
[45] V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, “Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1”, Electrochimica Acta, Vol. 43, pp. 3761-3766, 1998.
[46] M. Eikerling, A.A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 475, pp. 107-123, 1999.
[47] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance”, Journal of Power Sources, Vol.161, pp. 908-928, 2006.
[48] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance”, Journal of Power Sources, Vol.161, pp. 929-937, 2006.
[49] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes”, International Journal of Hydrogen, Vol.32, pp. 4358-4364, 2007.
[50] R. Chen, Y. Qin, Q. Du, J Peng, “Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell” , SAE International by University of British Columbia, Monday, 24 September, 2018.
[51] M. D. Maciá, J. M. Campiña, E. Herrero, J. M. Feliu, “On the Kinetics of Oxygen Reduction on Platinum Stepped Surfaces in Acidic Media”, J. Electroanal. Chem., Vol. 564, pp. 141−150, 2004.
[52] A. Kuzume, E. Herrero, J. M. Feliu, “Oxygen Reduction on Stepped Platinum Surfaces in Acidic Media”, J. Electroanal. Chem., Vol. 599, pp. 333−343, 2007.
[53] A. M. Gómez-Marín, R. Rizo, J. M. Feliu, “Some Reflections on the Understanding of the Oxygen Reduction Reaction at Pt(111)”, Beilstein J. Nanotechnol., Vol. 4, pp. 956−967, 2013.
[54] A. M. Gómez-Marín, J. M. Feliu, “Oxygen Reduction on Nanostructured Platinum Surfaces in Acidic Media: Promoting Effect of Surface Steps and Ideal Response of Pt(111)”, Catal. Today, Vol. 244, pp. 172−176, 2015.
[55] M. Shao, A. Peles, K. Shoemaker, “Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett”, Vol. 11, pp. 3714−3719, 2011.
[56] Q. Jia, W. Liang, M. K. Bates, P. Mani, W. Lee, S. Mukerjee, “Activity Descriptor Identification for Oxygen Reduction on Pt-Based Bimetallic Nanoparticles: In Situ Observation of the Linear Composition-Strain-Activity Relationship” ACS Nano, Vol. 9, pp. 387−400, 2015.
[57] I. E. L. Stephens, A. S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, “Understanding the Electrocatalysis of Oxygen Reduction on Platinum and Its Alloys” Energy Environ. Sci., Vol. 5, pp. 6744−6762, 2012.
[58] C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.-C. Chang, A. P. Paulikas, D. Tripkovic, “Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces”, J. Am. Chem. Soc., Vol. 133, pp. 14396−14403, 2011.
[59] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, “Trends in Electrocatalysis on Extended and Nanoscale Pt-Bimetallic Alloy Surfaces”, Nat. Mater., Vol. 6, pp. 241−247, 2007.
[60] S. J. Hwang, S.-K. Kim, J.-G. Lee, S.-C. Lee, J. H. Jang, P. Kim, T.-H. Lim, Y.-E. Sung, S. J. Yoo, “Role of Electronic Perturbation in Stability and Activity of Pt-Based Alloy Nanocatalysts for Oxygen Reduction”, J. Am. Chem. Soc., Vol. 134, pp. 19508−19511, 2012.
[61] T.-Y. Jeon, S. J. Yoo, Y.-H. Cho, K.-S. Lee, S. H. Kang, Y.-E. Sung, “Influence of Oxide on the Oxygen Reduction Reaction of Pt. Carbon-Supported Ni Alloy Nanoparticles”, J. Phys. Chem. C, Vol. 113, pp. 19732-19739, 2009.
[62] E. J. Coleman, M. H. Chowdhury, A. C. Co, “Insights into the Oxygen Reduction Reaction Activity of Pt/C and PtCu/C Catalysts”, ACS Catal, Vol. 5, pp. 1245−1253, 2015.
[63] K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, N. M. Markovic, “Measurement of Oxygen Reduction Activities via the Rotating Disc Electrode Method: From Pt Model Surfaces to Carbon-Supported High Surface Area Catalysts”, Electrochim. Acta, Vol. 53, pp. 3181−3188, 2008.
[64] Y.-J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi, H. Wang, “Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity”, Chem. Rev., Vol. 115, pp. 3433−3467, 2015.
[65] J. Greeley, I. E. L. Stephens, A. S.Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov., “Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts”, Nature Chem., Vol. 1, pp. 552 – 556, 2009
[66] K. Jayasayee, J. A. R. Van Veen, T. G. Manivasagam, S. Celebi, E. J. M. Hensen, F. A. de Bruijn, “Oxygen Reduction Reaction (ORR) Activity and Durability of Carbon Supported PtM (Co, Ni, Cu) Alloys: Influence of Particle Size and Non-Noble Metals”, Appl. Catal., B, Vol. 111 , pp. 515−526, 2012.
[67] R. R. Adzic, “Platinum Monolayer Electrocatalysts: Tunable Activity, Stability, and Self-Healing Properties. Electrocatalysis”, Vol. 3, pp. 163−169, 2012.
[68] R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A Valerio, F. Uribe, “Platinum Monolayer Fuel Cell Electrocatalysts. Top”, Catal., Vol. 46, pp. 249−262, 2007.
[69] W.-P. Zhou, K. Sasaki, D. Su, Y. Zhu, J. X. Wang, R. R. Adzic, “Gram-Scale-Synthesized Pd2Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction.”, J. Phys. Chem. C, Vol. 114, pp. 8950−8957, 2010.
[70] J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, “Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters”, Science, Vol. 315, pp. 220−222, 2007.
[71] J. L. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, “Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates”, Angew. Chem., Int. Ed., Vol. 44, pp. 2132−2135, 2005.
[72] B. Han, C. E. Carlton, J. Suntivich, Z. Xu, Y. Shao-Horn, “Oxygen Reduction Activity and Stability Trends of Bimetallic Pt0.5M0.5 Nanoparticle in Acid”, J. Phys. Chem. C, Vol. 119 , pp. 3971−3978, 2015.
[73] F. J. Lai, W. N. Su, L. S. Sarma, D. G. Liu, C. A. Hsieh, J. F. Lee, B. J. Hwang, “Chemical Dealloying Mechanism of Bimetallic Pt–Co Nanoparticles and Enhancement of Catalytic Activity toward Oxygen Reduction”, Chem. Eur. J., Vol. 16, pp. 4602 – 4611, 2010.
[74] K. A. Kuttiyiel, K. Sasaki, Y. Choi, D. Su, P. Liu, R. R. Adzic, “Nitride Stabilized PtNi Core-Shell Nanocatalyst for High Oxygen Reduction Activity”, Nano Lett., Vol. 12, pp. 6266−6271, 2012.
[75] K. A. Kuttiyiel, Y. Choi, S.-M. Hwang, G.-G. Park, T.- H. Yang, D. Su, K. Sasaki, P. Liu, R. R. Adzic, “Enhancement of the Oxygen Reduction on Nitride Stabilized Pt-M (M = Fe, Co, and Ni) Core- Shell Nanoparticle Electrocatalysts”, Nano Energy, Vol. 13, pp. 442−449, 2015.
[76] Jericha Iglesia, Chia-Chun Lang, Yen-Mu Chen, Szu-yuan Chen, Chung-Jen Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer”, Journal of Power Sources, 436 (2019) 226886
[77] B. Han, C. E. Carlton, A. Kongkanand, R. S. Kukreja, B. R. Theobald, L. Gan, R. O′Malley, P. Strasser, F. T. Wagnerd, S. H. Yang, “Record Activity and Stability of Dealloyed Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells”, Energy Environ. Sci., Vol. 8, pp. 258–266, 2015.
[78] Z. Qi, A. Kaufman, “Low Pt Loading High Performance Cathodes for PEM Fuel Cells”, J. Power Sources, Vol. 113, pp. 37-43, 2003.
[79] E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, “Influence of Nafion Loading in the Catalyst Layer of Gas Diffusion Electrodes for PEMFC”, J. Power Sources, Vol. 77, pp. 136-142, 1999.
[80] S.W. Mahlon, A.V. Judith, G. Shimshon, “Low Platinum Poading Electrodes for Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers”, Electrochim. Acta, Vol. 40, pp. 355-363, 1995.
[81] T. Frey, M. Linardi, “Effects of Membrane Electrode Assembly Preparation on the Polymer Electrolyte Membrane Fuel Cell Performance”, Electrochim. Acta, Vol. 50, pp. 99-105, 2004.
[82] A. L. Patterson, “The Scherrer formula for x-ray particle size determination” Phys. Rev., 56, 978–82, (1939).
[83] J. M. Rodríguez, J. A. H. Melivn, J. P. Peña, “Determination of the Real Surface Area of Pt Electrodes by Hydrogen Adsorption Using Cyclic Voltammetry”, J. Chem. Educ., Vol. 77, pp. 1195–7, 2000.
[84] X. Wang, Z. Tan, M. Zeng and J. Wang, “Carbon Nanocages: a New Support Material for Pt Catalyst with Remarkably High Durability”, Sci. Rep., Vol. 4, pp. 4437,2014.
[85] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang and S. K. Lo, “A PEM Fuel Cell with Metal Foam as Flow Distributor”, Energy Convers. Manage., Vol. 62, pp. 14-21, 2012.
[86] 吳佩蓉,「腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究」,國立中央大學,碩士論文,2013年。
[87] Sanjeev K. Gupta , Prafulla K. Jha and Shape and Mina Talati, “Size Dependent Melting Point Temperature of Nanoparticles”, MSF, 2008.
[88] Xianhe Zhang, Weiguo Li, Dong Wu, Yong Deng, Jiaxing Shao, Liming Chen and Daining Fang, “Size and shape dependent melting temperature of metallic nanomaterials”, JPCM, 075701, 9pp, 2019. |