博碩士論文 107328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.191.205.149
姓名 郎家君(Chia-Chun Lang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以全雷射製程技術製備高質量比功率密度和高耐久性之鉑殼合金觸媒層應用於低溫燃料電池陰極端
(Fabrication of Pt-skin nanoporous alloy thin film as high mass-specific power density and high durability catalyst for polymer-electrolyte-membrane fuel cells by laser-based techniques)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-1以後開放)
摘要(中) 本研究使用脈衝雷射沉積法(Pulsed Laser Deposition, PLD)製備Pt/Co (25/75 at %, PtCo3)奈米顆粒並應用於燃料電池陰極端之觸媒層。PtCo3於總擔量100 μg/cm2時,其質量比功率密度(Mass Specific Power Density, MSPD)在0.6 V下僅有3.5 kW/gPt,是因為大約減量了50%的白金擔載量。
而後結合了連續雷射退火(Continuous Wave Laser Processing, CWLP) 以有效提升Pt使用率及耐久性。本研究經過CWLP於2.4 W 0.35 mm/s條件下,可以有效增加奈米顆粒觸媒層的Pt反應表面積進而提升電池之性能,其MSPD於0.6 V下可以達到8.79 kW/gPt,比起沒有結合CWLP之電池整整提升了2.5倍之多;合金觸媒可以在降低Pt擔載量的同時,仍然保有優良的觸媒活性,推論是因為由PLD建立的觸媒微結構比起傳統的塗佈製程更能夠建立有效的三相點,再加上CWLP可以使觸媒表面重新排列形成Pt殼層,提高觸媒利用率進而得到高MSPD。
有結合CWLP之觸媒在經過5000圈加速老化循環測試後仍保有50%以上的化學活性表面積,此結果顯示使用CWLP進行熱處理可以於奈米觸媒製造出具有Pt殼層的PtCo3合金觸媒,同時也會有燒結作用,增強顆粒間之鍵結,以提升觸媒耐久性,具良好的化學穩定性。
結合PLD及CWLP製程所製備之PtCo3奈米顆粒觸媒層,可有效降低燃料電池中Pt擔載量並保有優良的觸媒活性,提高觸媒使用率。進而提升燃料電池性及耐久性並降低燃料電池成本,使燃料電池更加普及進而永續環境。
摘要(英) The catalyst layers for polymer-electrolyte-membrane fuel cells (PEMFC) are fabricated by deposition of platinum directly onto the gas diffusion layer using pulsed laser deposition (PLD). This technique reduces the number of steps required to synthesize the catalyst layer and the required Pt loading for PEMFC. In this study, PLD is used to reduce the Pt loading and the cost of the cell. A thin film of PtCo3 nanoparticles was deposited on gas diffusion layer by PLD process and further subjecting the film to scanning continuous-wave laser processing (CWLP). In CWLP, the Pt skin forms over the surface of PtCo3 nanoparticles via Pt segregation with enhanced firm contact between nanoparticles. Thereby increasing electrochemical surface area with concomitant sintering effecting. The Pt skin formation could retain the stability and performance of catalyst with decrease in Pt loading. Application of such catalyst to the cathode of a PEMFC exhibits a 2.5-fold increase in mass-specific power density (MSPD) with respect to that without laser processing, raising the cathode MSPD to 8.79 kW gPt−1 with 1 atm oxygen and 12.02 kW gPt−1 with 1.5 atm oxygen. Further increase in Pt-mass-specific power density might be achieved by reducing the Pt content in the starting Pt alloy and changing the ambient gas pressure in pulsed laser deposition to optimize the initial particle size.
關鍵字(中) ★ 脈衝雷射沉積法
★ 連續雷射處理
★ 質子交換膜燃料電池
★ 合金觸媒
關鍵字(英) ★ Pulsed laser deposition
★ scanning continuous-wave laser processing
★ PEM fuel cell
★ cathode
★ alloy catalysts
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1-1 前言 1
1-2 燃料電池介紹 2
1-2-1 質子交換膜燃料電池基本構造 4
1-2-2 質子交換膜燃料電池運作原理 5
1-2-3 膜電極組基本構造及製備方式 7
1-3 觸媒層製程發展 9
1-3-1 製備觸媒層之方式 9
1-3-2 燃料電池觸媒層各製程之現況 19
1-3-3 PEMFC主要發展之瓶頸 21
1-4 本團隊已完成之工作 23
1-5 研究動機與目的 24
第二章 文獻回顧 26
2-1 質子交換膜燃料電池 26
2-2 金屬多孔材之研究與應用 27
2-3 電化學交流阻抗分析 28
2-4 PEMFC合金觸媒研究發展 30
2-4-1 Pt觸媒表面形貌及顆粒大小研究探討 30
2-4-2 PtxMy觸媒研究探討 31
2-4-3 Core-Shell結構研究探討 34
2-5 應用脈衝雷射沉積於燃料電池 36
第三章 實驗方法與設備 39
3-1 實驗流程 39
3-2 實驗所需之材料 40
3-3 脈衝雷射沉積系統 41
3-3-1 脈衝雷射系統架設 41
3-3-2 奈米合金觸媒樣品製備參數 43
3-4 連續雷射退火 44
3-4-1 連續雷射退火系統架設 44
3-4-2 雷射升溫曲線檢測 45
3-4-3 鉑殼奈米合金觸媒樣品製備參數 46
3-5 膜電極組製備方式 46
3-5-1 膜電極組之組裝 46
3-5-2 熱壓方式 47
3-6 觸媒檢測方式 48
3-6-1 掃描式電子顯微鏡 48
3-6-2 能量色散X射線譜 49
3-6-3 穿透式電子顯微鏡 49
3-6-4 X光光電子能譜儀(XPS) 50
3-6-5 循環伏安法 52
3-6-6 加速老化測試 55
3-7 燃料電池測試 56
3-7-1 測試系統介紹 56
3-7-2 單電池測試系統之操作程序 57
3-7-3 J-V曲線量測 58
3-7-4 電子阻抗頻譜測試 59
第四章 實驗結果與討論 62
4-1 應用PLD技術製備PtCo3奈米觸媒於PEMFC陰極端 62
4-1-1 不同奈米觸媒於相同擔載量之電化學性能比較 62
4-1-2 不同奈米觸媒於相同擔載量之燃料電池性能比較 63
4-1-3 不同奈米觸媒於相同擔載量之EIS分析 64
4-1-4 不同奈米觸媒於相同擔載量之加速老化測試比較 65
4-1-5 不同奈米觸媒表面形貌與結構元素分析 66
4-2 應用CWLP於PtCo3奈米觸媒於PEMFC陰極端 69
4-2-1 CWLP雷射光斑診斷與樣品上之加熱曲線 69
4-2-2 CWLP之不同雷射能量與掃速對PtCo3奈米觸媒相同擔載量之電化學性能比較 74
4-2-3 相同擔載量之PtCo3奈米觸媒電池之性能比較 77
4-2-4 PtCo3奈米觸媒電池之EIS分析 80
4-2-5 PtCo3奈米觸媒之加速老化測試 83
4-2-6 CWLP對PtCo3奈米觸媒表面形貌結構之差異 86
4-3 應用雷射技術製備不同擔載量之不同觸媒比較 95
4-3-1 不同觸媒於不同擔載量下之PEMFC性能比較 96
4-3-2 不同觸媒燃料電池背壓測試 97
第五章 結論 98
第六章 未來展望 99
參考文獻 100
參考文獻 [1] 王智薇,「淺談新興能源科技產業─氫能與燃料電池」,產經資訊,2008。
[2] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals”, John Wiley & Sons, 2005.
[3] 黃鎮江,「燃料電池」,全華科技股份有限公司,2005。
[4] 趙中興,「燃料電池基礎」,全華圖書 ,2008 。
[5] Y Wang, K S. Chen, J Mishler, S C Cho, X C Adroher, “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research”, Appl. Energy, 88, pp. 981 1007, 2011.
[6] L. Xiong, A. Manthiram, “High Performance Membrane Electrode Assemblies with Ultra-Low Pt Loading for Proton Exchange Membrane Fuel Cells”, Electrochim. Acta, Vol. 50, pp. 3200 3204, 2005.
[7] H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst sprayed membrane technique”, J. Power Sources, 195 , 756-761, 2010.
[8] http://www.toray eng.com/lcd/coater/lineup/esc.html
[9] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process”, J. Electrochem. Soc., Vol. 151, pp. 1733-1737, 2004.
[10] F. F. Onana, N. Guillet, A. M. AlMayouf, “Modifed Pulse Electrodeposition of Pt Nanocatalyst as High-Performance Electrode for PEMFC”, J. Power Sources, Vol. 271, pp. 401-405, 2014.
[11] H. Kim, N.P. Subramanian, B.N.71 Popov, “Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition”, J. Power Sources, Vol. 138, pp. 14-24, 2004.
[12] S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside Fuel Cell Electrodes Using High Power Impulse Magnetron Sputtering”, J. Phys. D: Appl. Phys., Vol. 47, pp. 272001, 2014.
[13] M. S. Cogenli, S. Mukerjee, A. B. Yurtcan, “Membrane Electrode Assembly with Ultralow Platinum Loading for Cathode Electrode of PEM Fuel Cell by Using Sputter Deposition”, Fuel Cells, Vol. 15, pp. 288-297, 2015.
[14] A. Khan, B. K. Nath, J. Chutia, “Nanopillar Structured Platinum with Enhanced Catalytic Utilization for Electrochemical Reactions in PEMFC”, Electrochim. Acta, Vol. 146, pp. 171-177, 2014.
[15] M.S. Saha, A.F. Gull´, R.J. Allen, S. Mukerjee, “High Performance Polymer Electrolyte Fuel Cells with Ultra-Low Pt Loading Electrodesprepared by Dual Ion-Beam Assisted Deposition”, Electrochim. Acta, Vol. 51, pp. 4680-4692, 2006.
[16] https://www.itrc.narl.org.tw/Bulletin/News/ald.php
[17] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diusion Layer Using an Atomic Layer Deposition Technique”, Electrochim. Acta, Vol. 177, pp. 168-173, 2015.
[18] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt Loadings Using Pulsed Laser Deposition”, Electrochem. Solid-State Lett., Vol. 6, pp. 125-128, 2003.
[19] H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol. 6, pp. 180, 2016.
[20] T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, C. J. Tseng , “Production of High-Performance and Improved-Durability Pt-Catalyst/Support for Proton-Exchange-Membrane Fuel Cells with Pulsed Laser Deposition”, J. Phys. D Appl. Phys., Vol. 49, pp. 255601, 2016.
[21] H. Xu, E. Brosha, F. Garzon, F. Uribe, M. Wilson, B. Pivovar, “The Effect of Electrode Ink Processing and Composition Catalyst Utilization” ECS Trans., Vol. 11, pp. 383–391, 2007.
[22] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, “Proton Exchange Membrane Fuel Cells with Carbon Nanotube based Electrodes”, Nano Lett., Vol. 4,pp. 345–348, 2004.
[23] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., Vol. 6, pp. 125-128, 2003.
[24] W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-Low-Loading Pulsed-Laser-Deposited Platinum Catalyst Films for Polymer Electrolyte Membrane Fuel Cells”, J. Power Sources, Vol. 273, pp. 885-893, 2015.
[25] A. Brouzgou, S. Q. Song,P. Tsiakaras, “Low and Non-Platinum Electrocatalysts for PEMFCs: Current Status, Challenges and Prospects”, Applied Catalysis B: Environmental, Vol. 127, pp. 371-388, 2012.
[26] S. M. Haile, “Fuel Cell Material and Components”, Acta Materialia, Vol. 51, pp. 5981-6000, 2003.
[27] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X.C. Adronher. “A Review of Polymer Electrolyte Membrane Fuel Cells:Technology, Applications and Needs on Fundamental Research”, Applied Energy, Vol, 88, pp. 981-1007, 2011.
[28] http://www.goldgold168.com/palladium.php#.WyjZR1X-jRY
[29] U.S. Department of Energy, “Fuel Cell System Cost”, 2017.
[30] Y. F. Zhai, H. Zhang, D.Xing, Z. G. Shao, “The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test”, J. Power Sources, Vol. 164, pp. 126-133, 2007.
[31] J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, “A Review of PEM Fuel Cell Durability:Degradation Mechanisms and Mitigation Strategies”, J. Power Sources, Vol. 184, pp. 104-119, 2008.
[32] 林冠任,「利用脈衝雷射沉積技術成長PEMFC鉑奈米顆粒觸媒」,國立中央大學,碩士論文,2015年。
[33] 黃亭維,「應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層」,國立中央大學,碩士論文,2016年。
[34] 敖昱弘,「應用雷射材料製程技術於製備Pt3Co奈米結構陰極觸媒層以提升質子交換膜燃料電池性能」,國立中央大學,碩士論文,2019年。
[35] O.J. Murphy, A. Cisar, E. Clarke, “Low-cost light weight high power density PEM fuel cell stack”, Elsevier Science, Vol. 43, pp. 3829-3840, 1998.
[36] J.L. Jespersen, E. Schaltzb, S.K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, Journal Power Sources, Vol. 191, pp. 289-296, 2009.
[37] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell” , Journal of Power Source, Vol. 80, pp. 226-234, 1999.
[38] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions”, Journal of Power Sources, Vol. 128, pp. 208-217, 2004.
[39] W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells”, Journal of Power Sources, Vol. 180, pp. 1-14, 2008.
[40] J.J. Hwang, G.J. Hwang, R.H. Yeh, C.H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams”, Journal Heat Transfer, Vol. 124, pp. 120-129, 2002.
[41] M. Medraj, E. Baril, V. Loya, L.P. Lefebvre, “The effect of microstructure on the permeability of metallic foams”, Journal of Material Science, Vol. 42, pp. 4372-4383, 2007.
[42] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang and S.K. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[43] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang and S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor”, International Journal of Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[44] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 295, pp. 275-291, 2015
[45] V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, “Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1”, Electrochimica Acta, Vol. 43, pp. 3761-3766, 1998.
[46] M. Eikerling, A.A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 475, pp. 107-123, 1999.
[47] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance”, Journal of Power Sources, Vol.161, pp. 908-928, 2006.
[48] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance”, Journal of Power Sources, Vol.161, pp. 929-937, 2006.
[49] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes”, International Journal of Hydrogen, Vol.32, pp. 4358-4364, 2007.
[50] R. Chen, Y. Qin, Q. Du, J Peng, “Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell” , SAE International by University of British Columbia, Monday, 24 September, 2018.
[51] M. D. Maciá, J. M. Campiña, E. Herrero, J. M. Feliu, “On the Kinetics of Oxygen Reduction on Platinum Stepped Surfaces in Acidic Media”, J. Electroanal. Chem., Vol. 564, pp. 141−150, 2004.
[52] A. Kuzume, E. Herrero, J. M. Feliu, “Oxygen Reduction on Stepped Platinum Surfaces in Acidic Media”, J. Electroanal. Chem., Vol. 599, pp. 333−343, 2007.
[53] A. M. Gómez-Marín, R. Rizo, J. M. Feliu, “Some Reflections on the Understanding of the Oxygen Reduction Reaction at Pt(111)”, Beilstein J. Nanotechnol., Vol. 4, pp. 956−967, 2013.
[54] A. M. Gómez-Marín, J. M. Feliu, “Oxygen Reduction on Nanostructured Platinum Surfaces in Acidic Media: Promoting Effect of Surface Steps and Ideal Response of Pt(111)”, Catal. Today, Vol. 244, pp. 172−176, 2015.
[55] M. Shao, A. Peles, K. Shoemaker, “Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett”, Vol. 11, pp. 3714−3719, 2011.
[56] Q. Jia, W. Liang, M. K. Bates, P. Mani, W. Lee, S. Mukerjee, “Activity Descriptor Identification for Oxygen Reduction on Pt-Based Bimetallic Nanoparticles: In Situ Observation of the Linear Composition-Strain-Activity Relationship” ACS Nano, Vol. 9, pp. 387−400, 2015.
[57] I. E. L. Stephens, A. S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, “Understanding the Electrocatalysis of Oxygen Reduction on Platinum and Its Alloys” Energy Environ. Sci., Vol. 5, pp. 6744−6762, 2012.
[58] C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.-C. Chang, A. P. Paulikas, D. Tripkovic, “Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces”, J. Am. Chem. Soc., Vol. 133, pp. 14396−14403, 2011.
[59] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, “Trends in Electrocatalysis on Extended and Nanoscale Pt-Bimetallic Alloy Surfaces”, Nat. Mater., Vol. 6, pp. 241−247, 2007.
[60] S. J. Hwang, S.-K. Kim, J.-G. Lee, S.-C. Lee, J. H. Jang, P. Kim, T.-H. Lim, Y.-E. Sung, S. J. Yoo, “Role of Electronic Perturbation in Stability and Activity of Pt-Based Alloy Nanocatalysts for Oxygen Reduction”, J. Am. Chem. Soc., Vol. 134, pp. 19508−19511, 2012.
[61] T.-Y. Jeon, S. J. Yoo, Y.-H. Cho, K.-S. Lee, S. H. Kang, Y.-E. Sung, “Influence of Oxide on the Oxygen Reduction Reaction of Pt. Carbon-Supported Ni Alloy Nanoparticles”, J. Phys. Chem. C, Vol. 113, pp. 19732-19739, 2009.
[62] E. J. Coleman, M. H. Chowdhury, A. C. Co, “Insights into the Oxygen Reduction Reaction Activity of Pt/C and PtCu/C Catalysts”, ACS Catal, Vol. 5, pp. 1245−1253, 2015.
[63] K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, N. M. Markovic, “Measurement of Oxygen Reduction Activities via the Rotating Disc Electrode Method: From Pt Model Surfaces to Carbon-Supported High Surface Area Catalysts”, Electrochim. Acta, Vol. 53, pp. 3181−3188, 2008.
[64] Y.-J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi, H. Wang, “Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity”, Chem. Rev., Vol. 115, pp. 3433−3467, 2015.
[65] J. Greeley, I. E. L. Stephens, A. S.Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov., “Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts”, Nature Chem., Vol. 1, pp. 552 – 556, 2009
[66] K. Jayasayee, J. A. R. Van Veen, T. G. Manivasagam, S. Celebi, E. J. M. Hensen, F. A. de Bruijn, “Oxygen Reduction Reaction (ORR) Activity and Durability of Carbon Supported PtM (Co, Ni, Cu) Alloys: Influence of Particle Size and Non-Noble Metals”, Appl. Catal., B, Vol. 111 , pp. 515−526, 2012.
[67] R. R. Adzic, “Platinum Monolayer Electrocatalysts: Tunable Activity, Stability, and Self-Healing Properties. Electrocatalysis”, Vol. 3, pp. 163−169, 2012.
[68] R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A Valerio, F. Uribe, “Platinum Monolayer Fuel Cell Electrocatalysts. Top”, Catal., Vol. 46, pp. 249−262, 2007.
[69] W.-P. Zhou, K. Sasaki, D. Su, Y. Zhu, J. X. Wang, R. R. Adzic, “Gram-Scale-Synthesized Pd2Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction.”, J. Phys. Chem. C, Vol. 114, pp. 8950−8957, 2010.
[70] J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, “Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters”, Science, Vol. 315, pp. 220−222, 2007.
[71] J. L. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, “Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates”, Angew. Chem., Int. Ed., Vol. 44, pp. 2132−2135, 2005.
[72] B. Han, C. E. Carlton, J. Suntivich, Z. Xu, Y. Shao-Horn, “Oxygen Reduction Activity and Stability Trends of Bimetallic Pt0.5M0.5 Nanoparticle in Acid”, J. Phys. Chem. C, Vol. 119 , pp. 3971−3978, 2015.
[73] F. J. Lai, W. N. Su, L. S. Sarma, D. G. Liu, C. A. Hsieh, J. F. Lee, B. J. Hwang, “Chemical Dealloying Mechanism of Bimetallic Pt–Co Nanoparticles and Enhancement of Catalytic Activity toward Oxygen Reduction”, Chem. Eur. J., Vol. 16, pp. 4602 – 4611, 2010.
[74] K. A. Kuttiyiel, K. Sasaki, Y. Choi, D. Su, P. Liu, R. R. Adzic, “Nitride Stabilized PtNi Core-Shell Nanocatalyst for High Oxygen Reduction Activity”, Nano Lett., Vol. 12, pp. 6266−6271, 2012.
[75] K. A. Kuttiyiel, Y. Choi, S.-M. Hwang, G.-G. Park, T.- H. Yang, D. Su, K. Sasaki, P. Liu, R. R. Adzic, “Enhancement of the Oxygen Reduction on Nitride Stabilized Pt-M (M = Fe, Co, and Ni) Core- Shell Nanoparticle Electrocatalysts”, Nano Energy, Vol. 13, pp. 442−449, 2015.
[76] Jericha Iglesia, Chia-Chun Lang, Yen-Mu Chen, Szu-yuan Chen, Chung-Jen Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer”, Journal of Power Sources, 436 (2019) 226886
[77] B. Han, C. E. Carlton, A. Kongkanand, R. S. Kukreja, B. R. Theobald, L. Gan, R. O′Malley, P. Strasser, F. T. Wagnerd, S. H. Yang, “Record Activity and Stability of Dealloyed Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells”, Energy Environ. Sci., Vol. 8, pp. 258–266, 2015.
[78] Z. Qi, A. Kaufman, “Low Pt Loading High Performance Cathodes for PEM Fuel Cells”, J. Power Sources, Vol. 113, pp. 37-43, 2003.
[79] E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, “Influence of Nafion Loading in the Catalyst Layer of Gas Diffusion Electrodes for PEMFC”, J. Power Sources, Vol. 77, pp. 136-142, 1999.
[80] S.W. Mahlon, A.V. Judith, G. Shimshon, “Low Platinum Poading Electrodes for Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers”, Electrochim. Acta, Vol. 40, pp. 355-363, 1995.
[81] T. Frey, M. Linardi, “Effects of Membrane Electrode Assembly Preparation on the Polymer Electrolyte Membrane Fuel Cell Performance”, Electrochim. Acta, Vol. 50, pp. 99-105, 2004.
[82] A. L. Patterson, “The Scherrer formula for x-ray particle size determination” Phys. Rev., 56, 978–82, (1939).
[83] J. M. Rodríguez, J. A. H. Melivn, J. P. Peña, “Determination of the Real Surface Area of Pt Electrodes by Hydrogen Adsorption Using Cyclic Voltammetry”, J. Chem. Educ., Vol. 77, pp. 1195–7, 2000.
[84] X. Wang, Z. Tan, M. Zeng and J. Wang, “Carbon Nanocages: a New Support Material for Pt Catalyst with Remarkably High Durability”, Sci. Rep., Vol. 4, pp. 4437,2014.
[85] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang and S. K. Lo, “A PEM Fuel Cell with Metal Foam as Flow Distributor”, Energy Convers. Manage., Vol. 62, pp. 14-21, 2012.
[86] 吳佩蓉,「腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究」,國立中央大學,碩士論文,2013年。
[87] Sanjeev K. Gupta , Prafulla K. Jha and Shape and Mina Talati, “Size Dependent Melting Point Temperature of Nanoparticles”, MSF, 2008.
[88] Xianhe Zhang, Weiguo Li, Dong Wu, Yong Deng, Jiaxing Shao, Liming Chen and Daining Fang, “Size and shape dependent melting temperature of metallic nanomaterials”, JPCM, 075701, 9pp, 2019.
指導教授 曾重仁 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明