博碩士論文 107328017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.139.97.157
姓名 謝采玲(Tsai-Ling Hsieh)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 金屬發泡材對質子交換膜燃料電池性能之影響
(The influence of metal foam structure on the performance of proton exchange membrane fuel cell)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-1以後開放)
摘要(中) 本研究使用金屬發泡材為質子交換膜燃料電池之流場,金屬發泡材具有高孔隙率(85%以上)、質量輕之特性,相較於傳統流道具有較小的質傳效應且無肋條遮蔽效應。藉由改變三種不同金屬發泡材面密度(800 g/m2、1000 g/m2、1200 g/m2)及三種孔洞數(94 PPI、110 PPI、130 PPI),共九種不同規格之金屬發泡材。探討金屬發泡材面密度及孔洞大小對於燃料電池性能的影響,並量測電池性能、交流阻抗及24小時性能測試。在24小時性能測試時每三小時清除大部分水氣並量測其性能、以EIS分析質傳阻抗及分析波德圖中水的擾動。實驗結果顯示在50 ℃下,使用1200 g/m2•130PPI規格之金屬發泡材性能為最低,性能為1217 mA/cm2,使用800 g/m2•94PPI規格之金屬發泡材性能為最高,性能為1715 mA/cm2,性能相差41%之電池性能,在24小時性能測試結果下,在三種規格面密度下94 PPI金屬發泡材均具有較高的電池穩定性,並以800面密度為最好,此研究有助於未來發展具有低質傳阻抗、高性能和高穩定性之質子交換膜燃料電池。
摘要(英) In this research low weight and high porous metal foam is used as a flow channel in Proton Exchange Membrane Fuel Cell(PEMFC)to reduce the mass transfer resistance and no-shadowing effect. Three area densities(800 g/m2, 1000 g/m2, 1200 g/m2)of metal foam with three different pores per inch(94 PPI, 110 PPI, 130 PPI) are used in this study. The impact of metal foam area density and pore size on the performance of fuel cell is investigated in detail. Also, AC impedance and performance test for 24 hours is also studied. The water formed in the 24 hours cell operation of PEMFC is removed periodically for every 3 hours. Further, the electrochemical impedance spectroscopy and I-V curve are measured accordingly to understand the mass transfer characteristics and water distribution by bode plot. Results in this study show that at 50℃, the performance of using 1200 g/m2•130PPI metal foam is the lowest, the performance is 1217 mA/cm2(@ 0.6 V), and the performance using 800 g/m2•94PPI metal foam is the highest, the performance is 1715 mA/cm2(@ 0.6 V). A difference of 41 % in cell performance(@ 0.6 V)is observed by varying the density and porosity of metal foam. The 24 hours cell performance results shows that 94 PPI metal foam exhibits highest stability in three kinds PPI and an area density of 800 g/m2 has highest stability in three differents area density. The results of this study are helpful for researchers in future to develop PEMFC with low mass transfer resistance, high performance, and high stability.
關鍵字(中) ★ 質子交換膜燃料電池
★ 金屬發泡材
★ 質傳阻抗
★ 穩定性
關鍵字(英) ★ PEMFC
★ metal foam
★ Mass transfer impedance
★ stability
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
符號表 xiii
第一章 緒論 1
1-1 前言 1
1-2 質子交換膜燃料電池 2
1-2-1燃料電池種類 2
1-2-2質子交換膜燃料電池原理 5
1-2-3質子交換膜燃料電池結構 7
1-2-4質子交換膜燃料電池極化現象 12
1-3 研究動機 14
第二章 文獻回顧 16
2-1 質子交換膜燃料電池 16
2-2 金屬發泡材 18
2-3 壓降分析 21
2-4 電化學交流阻抗分析 22
第三章 研究方法與實驗設備 27
3-1 實驗架構 27
3-2 結構分析 27
3-3 壓降量測 28
3-4 孔隙率量測 29
3-5 燃料電池元件 30
3-5-1 端板 30
3-5-2 金屬極板與流道 31
3-5-3 鎳金屬發泡材 31
3-5-4 氣密墊片 33
3-5-5 膜電極組 34
3-6 燃料電池測試系統 36
3-7 電化學交流阻抗分析 40
第四章 結果與討論 47
4-1 金屬發泡材分析 47
4-2 電池性能測試 50
4-3 壓降測試 61
4-4 24小時性能測試 63
4-5 背壓測試 73
第五章 結論與未來規畫 79
5-1 結論 79
5-2 未來規劃 80
第六章 參考文獻 81
參考文獻 [1] S. M. Lu, “A review of high-efficiency motors: Specification, policy, and technology,” Renew and Sustainable Energy Reviews, Vol. 59, pp. 1-12, 2016.
[2] A. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. A. Makky, A. G. Olabi, “Developments in fuel cell technologies in the transport sector,” Hydrogen Energy, Unpoblished.
[3] https://energywhitepaper.tw/upload/201801/151684997183219.pdf
[4] C. Y. Liu, C. C. Sung, “A review of the performance and analysis of proton exchange membrane electrode assembles,” Journal of Power Sources, Vol. 220, pp. 348-353, 2012.
[5] W. Mitchell Jr., “Fuel Cells a Series of Monographs,” Academic Press., New York, 1963.
[6] A, Kumar, R. G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal form in the flow-field of the bipolar/end plate,” Journal of Power Source, Vol. 114, pp. 54-62, 2003.
[7] E. Hontañón, M. J. Escudero, C. Bautista, P. L. Garcı́a-Ybarra, L. Daza, “Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics technique,” Journal of Power Source, Vol. 86, pp. 363-368, 2001.
[8] A. Kumar, R. G. Reddy, “Effect of channel dimensions and shapein the flow-field distributor on the performance of polymer electrolyte membrane fuel cells,” Journal of Power Source, Vol. 113, pp. 11-18, 2003.
[9] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[10] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[11] 蔡秉蒼,「應用金屬發泡材為流道之質子交換膜燃料電池之研究」,國立中央大學能源工程研究所博士論文,2012.
[12] H. Yang, T. S. Zhao, “Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells,” Electrochimical Acta, Vol. 50, pp. 3243-3252, 2005.
[13] H. Li, Y. H. Tang, Z. W. Wang, Z. Shi, S. H. Wu, D. T. Song, J. I. Zhang, K. Fatih, J. J. Zang, H. J. Wang, Z. S. Liu, R. Aboutallah, A. Mazza, “A review of water flooding issues in the proton exchange membrane fuel cell,” Journal of Power Source, Vol. 178, pp. 103-117, 2008.
[14] H. Tawfik, Y. Hunga, D. Mahajan, “Metal bipolar plates for PEM fuel cell-A review,” Journal of Power Sources, Vol. 163, pp.755–767, 2007.
[15] E. Middelman, W. Kout, B. Vogelaar, J. Lenssen, E. de–Waal, “Bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol. 118, pp.44–46, 2003.
[16] M. V. Williams, E. Begg, L. Bonville, H. Russell–Kunz, “Characterization of Gas Diffusion Layers for PEMFC,” Journal of The Electrochemical Society, Vol. 151, A1173–A1180, 2004.
[17] E. K. Ahmad, J. M. Thomas, J. L. Brett, G. P. Bruno, “ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells,” Journal of The Electrochemical Society, Vol. 218, pp.393–404, 2012.
[18] N. Hussain, E. V. Steen, S. Tanaka, P. Levecque, “Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression e Part I: Electrical,” Journal of The Electrochemical Society, Vol. 337, pp.18-24, 2014.
[19] G. Y. Chen, C. Wang, Y. J. Lei, J. B. Zhang, Z. M. Mao, Z. Q. Mao, J. W. Guo, J. Q. Li, M. G. Ouyang, “Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs,” Journal of Hydrogen Energy, Vol. 42, no. 50, pp. 29960-29965, 2017.
[20] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhanga, D. Song, Z. S. Liu, H. Wang, J. Shen, “A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation”, Journal of Power Sources, Vol. 165, no. 2, pp. 739-756, 2007.
[21] D. K. Lee, S. W. Hwang, “Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs,” Journal of Hydrogen Energy, Vol. 33, no. 11, pp. 2790-2794, 2008.
[22] C. H. Tsai, C. C. Wang, C. Y. Chang, C. H. Lin, Y. W. Chen-Yang, “Enhancing performance of Nafion®-based PEMFC by 1-D channel metal-organic frameworks as PEM filler,” Journal of Hydrogen Energy, Vol. 39, no. 28, pp. 15696-15705, 2014.
[23] A. Demin, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Journal of Hydrogen Energy, Vol. 26, no. 10, pp. 1103-1108, 2001.
[24] 黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005.
[25] http://www.enedu.org.tw/files/DownloadFile/2013101505326.pdf
[26] O. J. Murphy, A. Cisar, E. Clarke, “Low-cost light weight high power density PEM fuel cell stack,” Elsevier Science, Vol. 43, pp. 3829-3840, 1998.
[27] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of Power Source, Vol. 80, pp. 226-234, 1999.
[28] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions,” Journal of Power Sources, Vol. 128, pp. 208-217, 2004.
[29] X. Yan, M. Hou, H. Zhang, F. Jing, P. Ming, B. Yi, “Performance of PEMFC stack using expanded graphite bipolar plates,” Journal of Power Sources, vol. 160, pp.252-257,2006.
[30] W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells,” Journal of Power Sources, Vol. 180, pp. 1-14, 2008.
[31] S. Asghari, M. H. Shahsamandi, M. R. A. Khorasani, “Design and manufacturing of end plates of a 5 kW PEM fuel cell,” Int J Hydrogen Energy, Vol. 35, pp. 9291-9297, 2010.
[32] J. J. Hwang, G. J. Hwang, R. H. Yeh, C. H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams,” Journal of Heat Transfer, Vol. 124, pp. 120-129, 2002.
[33] M. Medraj, E. Baril, V. Loya, L. P. Lefebvre, “The effect of microstructure on the permeability of metallic foams,” Journal of Material Science, Vol. 42, pp. 4372-4383, 2007.
[34] J. Kim, N. Cunningham, “Development of porous carbon foam polymer electrolyte membrane fuel cell,” Journal of Power Sources, Vol. 195, pp. 2291-2300, 2010.
[35] N. Dukhan, K. Patel, “Effect of sample’s length on flow properties of open-cell metal foam and pressure-drop correlation,” Journal of Porous Mater, Vol. 18, pp. 655-665, 2011.
[36] B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang, S. K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” Journal of Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[37] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang, S. K. Lo, “A PEM fuel cell with metal foam as flow distributor,” Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[38] N. Dukhan, Ö. Bagci, M. Özdemir, “Metal foam hydrodynamics: flow regimes from pre-Darcy to turbulent,” Journal of Heat Mass Transfer, Vol. 77, pp. 114-123, 2014.
[39] A. Fly, D. Butcher, Q. Meyer, M. Whiteley, A. Spencer, C. Kim, P. R. Shearing, D. J. L. Brett, R. Chen, “Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEMFC,” Journal of Hydrogen Energy, Vol. 37, pp. 422-435, 2012.
[40] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 295, pp. 275-291, 2015.
[41] H. Yang, T. S. Zhao, “Effect of anode flow filed design on the performance of liquid feed direct methanol fuel cells,” Electrochimical Acta, Vol. 50, pp. 3243-3252, 2005.
[42] H. Yang, T. S. Zhao, Q. Ye, “Pressure drop behavior in the anode flow filed of liquid feed direct methanol fuel cells,” Journal of Power Sources,Vol. 142, pp.117-124, 2005.
[43] X. Liu, H. Guo, F. Ye, C. F. Ma, “Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells,” Electrochimica Acta, Vol. 52, pp. 3607-3614, 2007.
[44] K. Jiao, J. Park, X. Li, “Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell,” Applied Energy, Vol. 87, pp. 2770-2777, 2010.
[45] V. A. Paganin, C. L. F. Oliveira, E. A. Ticianelli, T. E. Springer, E. R. Gonzalez, “Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell,” Electrochimica Acta, Vol. 43, pp. 3761-3766, 1998.
[46] M. Eikerling, A. A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 475, pp. 107-123, 1999.
[47] T. J. P. Freire, E. R. Gonzalez, “Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells,” Journal of Electroanalytical Chemistry, Vol. 503, pp. 57-68, 2001.
[48] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance,” Journal of Power Sources, Vol. 161, pp. 908-928, 2006.
[49] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance,” Journal of Power Sources, Vol. 161, pp. 929-937, 2006.
[50] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes,” Journal of Hydrogen, Vol. 32, pp. 4358-4364, 2007.
[51] S. Wasterlain, D. Candusso, D. Hissel, F. Harel, P. Bergman, P. Menard, M. Anwar, “Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and Voltammetry techniques,” Journal of Power Sources, Vol. 195, pp. 984-993, 2010.
[52] R. Chen, Y. Qin, Q. Du, J Peng, “Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell,” SAE International by University of British Columbia, September 24, 2018.
[53] E. Barsoukov, J. R. Macdonald (2nd Eds), “Impedance spectroscopy: theory, experiment, and application,” John Wiley&Sons, Inc., 2005.
[54] G. A. Futter, P. Gazdzicki. A. K. Friedrich. A. Lata, J. T. Jahnke, “Physical modeling of polymer-electrolyte membrane fuel cells: Understanding water management and impedance spectra,” Journal of Power Sources, Vol. 391, pp. 148-161, 2018.
[55] S. Tanaka, A. G. Manlan, “Investigating design parameters of a perforated metal gas diffusion layer in a polymer electrolyte membrane fuel cell,” Journal of Power Sources, Vol. 413, pp. 198-208, 2019.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明