參考文獻 |
1. Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307.
2. Tschakert, P. Views from the vulnerable: understanding climatic and other stressors in the Sahel. Glob. Environ. Chang. 2007, 17, 381–396.
3. Gommes, R.A.; Petrassi, F. Rainfall variability and drought in Sub-Saharan Africa since 1960 - Google Books. 1994.
4. Ayalew, D.; Tesfaye, K.; Mamo, G.; Yitaferu, B.; Bayu, W. Variability of rainfall and its current trend in Amhara region, Ethiopia. African J. Agric. Res. 2012, 7, 1475–1486, doi:10.5897/AJAR11.698.
5. Haile, T. Causes and Characteristics of Drought in Ethiopia. Ethiop. J. Agric. Sci. 1988.
6. Simane, B.; Beyene, H.; Deressa, W.; Kumie, A.; Berhane, K.; Samet, J. Review of climate change and health in Ethiopia: Status and gap analysis. Ethiop. J. Heal. Dev. 2016, 30, 28–41.
7. Tsegay Wolde-Georgis. El Niño and Drought Early Warning in Ethiopia. Int. J. African Stud. 1997, 10.
8. Goyol, K.B.; Girma, A.A. One WASH national program (OWNP) Ethiopia: a SWAp with a comprehensive management structure. In Proceedings of the Loughborough University; Loughborough University, 2015.
9. Schmidt, W.; Peter Uhe, A.; Kimutai, J.; Otto, F.; Cullen, H. Climate and Development Knowledge Network and World Weather Attribution Initiative Raising Risk Awareness. R. Netherlands Meteorol. Inst. 2017, 2016–2017.
10. Barrientos, M.; Soria, C. IndexMundi - Country Facts Available online: https://www.indexmundi.com/ (accessed on May 15, 2020).
11. Kumar, B.G. Ethiopian famines 1973–1985: A case-study. Polit. Econ. Hunger 1990, 2, 173–216.
12. Gore, T.; Hillier, D. Climate Change and Future Impacts on Food Security. Oxfam Policy Pract. Agric. Food L. 2011, 11, 57–62.
13. Yusuf, A.A.; Francisco, H. Climate Change Vulnerability Mapping for Southeast Asia Vulnerability Mapping for Southeast Asia. East 2009, 181, 1–19, doi:10.1158/1541-7786.MCR-07-0267.
14. IPCC(AR4) Available online: http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html (accessed on Jul 7, 2017).
15. Philip, S.; Kew, S.F.; Jan van Oldenborgh, G.; Otto, F.; O’Keefe, S.; Haustein, K.; King, A.; Zegeye, A.; Eshetu, Z.; Hailemariam, K.; et al. Attribution Analysis of the Ethiopian Drought of 2015. J. Clim. 2018, 31, 2465–2486, doi:10.1175/JCLI-D-17-0274.1.
16. USAID El niño in ethiopia, A Real-Time Review of Impacts and Responses 2015-2016; 2016;
17. Camberlin, P. Rainfall anomalies in the source region of the Nile and their connection with the Indian summer monsoon. J. Clim. 1997, 10, 1380–1392.
18. Korecha, D.; Sorteberg, A. Validation of operational seasonal rainfall forecast in Ethiopia. Water Resour. Res. 2013, 49, 7681–7697.
19. Author, E.; Keller, E.J. Drought, War, and the Politics of Famine in; 1992; Vol. 30;.
20. Gebrehiwot, T.; van der Veen, A.; Maathuis, B. Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 309–321, doi:10.1016/j.jag.2010.12.002.
21. Wolde-Georgis, T. El Niño and Drought Early Warning in Ethiopia. Internet J. African Stud. 1997, 2, 10.
22. Webb, P.; Braun, J. von Famine and food security in Ethiopia: lessons for Africa.; John Wiley & Sons Ltd, 1994; ISBN 0471948217.
23. Nicholls, N. What are the potential contributions of El Niño-Southern Oscillation Research to Early Warning of Potential Acute Food-deficit Situations? Internet J. African Stud. 1997.
24. Quinn, W.H.; Neal, V.T.; De Mayolo, S.E.A. El Niño occurrences over the past four and a half centuries. J. Geophys. Res. Ocean. 1987, 92, 14449–14461.
25. Mohammed, Y.; Yimer, F.; Tadesse, M.; Tesfaye, K. Meteorological drought assessment in north east highlands of Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2018.
26. Liou, Y.-A.; Mulualem, G.M. Spatio–temporal Assessment of Drought in Ethiopia and the Impact of Recent Intense Droughts. Remote Sens. 2019, 11, 1828, doi:10.3390/rs11151828.
27. Mishra, S.S.; Nagarajan, R. Forecasting drought in Tel River Basin using feedforward recursive neural network. Int. Conf. Environ. Biomed. Biotechnol. 2012, 41, 122–126.
28. Wilhite, D.A.; Glantz, M.H. Understanding: the Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120, doi:10.1080/02508068508686328.
29. Cheng, C.-H.; Nnadi, F.; Liou, Y.-A. Energy Budget on Various Land Use Areas Using Reanalysis Data in Florida. Adv. Meteorol. 2014, 2014, 1–13, doi:10.1155/2014/232457.
30. Dorjsuren, M.; Liou, Y.-A.; Cheng, C.-H. Time Series MODIS and in Situ Data Analysis for Mongolia Drought. Remote Sens. 2016, 8, 509, doi:10.3390/rs8060509.
31. Hao, Z.; Singh, V.P.; Xia, Y. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Rev. Geophys. 2018, 56, 108–141, doi:10.1002/2016RG000549.
32. Hayes, M.J.; Svoboda, M.D.; Wardlow, B.D.; Anderson, M.C.; Kogan, F. Drought monitoring: Historical and current perspectives. In Remote Sensing of Drought: Innovative Monitoring Approaches; 2012; pp. 1–19 ISBN 9781439835609.
33. Du, L.; Song, N.; Liu, K.; Hou, J.; Hu, Y.; Zhu, Y.; Wang, X.; Wang, L.; Guo, Y. Comparison of Two Simulation Methods of the Temperature Vegetation Dryness Index (TVDI) for Drought Monitoring in Semi-Arid Regions of China. Remote Sens. 2017, 9, 177, doi:10.3390/rs9020177.
34. Adnan, S.; Ullah, K.; Shuanglin, L.; Gao, S.; Khan, A.H.; Mahmood, R. Comparison of various drought indices to monitor drought status in Pakistan. Clim. Dyn. 2018, 51, 1885–1899, doi:10.1007/s00382-017-3987-0.
35. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58, doi:10.1038/nclimate1633.
36. Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 2008, 31, 79–105, doi:10.1007/s00382-007-0340-z.
37. Carrão, H.; Russo, S.; Sepulcre-Canto, G.; Barbosa, P. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 74–84, doi:10.1016/j.jag.2015.06.011.
38. Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216.
39. Few, R. Health and climatic hazards: framing social research on vulnerability, response and adaptation. Glob. Environ. Chang. 2007, 17, 281–295.
40. Yanda, P.Z.; Mubaya, C.P. Managing a changing climate in Africa: Local level vulnerabilities and adaptation experiences; African Books Collective, 2011; ISBN 9987080898.
41. XIE, S.; Philander, S.G.H. A coupled ocean‐atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 1994, 46, 340–350.
42. Robinson, P.J.; Henderson-Sellers, A. Contemporary climatology; Routledge, 2014; ISBN 131788955X.
43. Glantz, M.H.; Katz, R.W.; Nicholls, N. Teleconnections linking worldwide climate anomalies; Cambridge University Press Cambridge, 1991; Vol. 535;.
44. Glantz, M.H. Currents of change: impacts of El Niño and La Niña on climate and society; Cambridge University Press, 2001; ISBN 052178672X.
45. Hoerling, M.P.; Kumar, A.; Zhong, M. El Niño, La Niña, and the nonlinearity of their teleconnections. J. Clim. 1997, 10, 1769–1786.
46. Wolter, K.; Timlin, M.S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 2011, 31, 1074–1087, doi:10.1002/joc.2336.
47. Mazzarella, A.; Giuliacci, A.; Scafetta, N. Quantifying the Multivariate ENSO Index (MEI) coupling to CO2 concentration and to the length of day variations. Theor. Appl. Climatol. 2013, 111, 601–607, doi:10.1007/s00704-012-0696-9.
48. Golden Gate Weather Services El Niño and La Niña Years and Intensities Available online: https://ggweather.com/enso/oni.htm (accessed on Jun 9, 2020).
49. Ashok, K.; Guan, Z.; Yamagata, T. A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteorol. Soc. Japan. Ser. II 2003, 81, 41–56.
50. Black, E. The relationship between Indian Ocean sea–surface temperature and East African rainfall. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 363, 43–47.
51. Conway, D.; Hanson, C.E.; Doherty, R.; Persechino, A. GCM simulations of the Indian Ocean dipole influence on East African rainfall: Present and future. Geophys. Res. Lett. 2007, 34, L03705, doi:10.1029/2006GL027597.
52. Behera, S.K.; Luo, J.-J.; Masson, S.; Delecluse, P.; Gualdi, S.; Navarra, A.; Yamagata, T. Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Clim. 2005, 18, 4514–4530.
53. Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363.
54. Kogan, F. Global drought detection and impact assessment from space. Drought a Glob. Assess. 2000.
55. Kuri, F.; Murwira, A.; Murwira, K.S.; Masocha, M. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 39–46.
56. Jiao, W.; Zhang, L.; Chang, Q.; Fu, D.; Cen, Y.; Tong, Q. Evaluating an enhanced vegetation condition index (VCI) based on VIUPD for drought monitoring in the continental United States. Remote Sens. 2016, 8, 224.
57. Townshend, J.R.G.; Justice, C.O. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens. 1986, 7, 1435–1445.
58. Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668.
59. Tadesse, T.; Demisse, G.B.; Zaitchik, B.; Dinku, T. Satellite‐based hybrid drought monitoring tool for prediction of vegetation condition in Eastern Africa: A case study for Ethiopia. Water Resour. Res. 2014, 50, 2176–2190.
60. Dastorani, M.T.; Massah Bavani, A.R.; Poormohammadi, S.; Rahimian D A Associate, M.H. Assessment of potential climate change impacts on drought indicators (Case study: Yazd station, Central Iran). DESERT 2011, 16, 159–167.
61. Cheng, C.-H.; Nnadi, F.; Liou, Y.-A. A regional land use drought index for Florida. Remote Sens. 2015, 7, 17149–17167, doi:10.3390/rs71215879.
62. Ntale, H.K.; Gan, T.Y. Drought indices and their application to East Africa. Int. J. Climatol. 2003, 23, 1335–1357.
63. Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. Eighth Conf. Appl. Climatol. 17-22 January 1993, Anaheim, Calif. 1993, 179, 17–22.
64. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718, doi:10.1175/2009JCLI2909.1.
65. Rouse, J. W., R. H. Haas, J. A. Schell, and D.W.D. Monitoring vegetation systems in the Great Plains with ERTS, Third ERTS Symposium. Nasa Sp-351 I, 1973, 309–317.
66. Gebrehiwot, T.; Van der Veen, A.; Maathuis, B. Governing agricultural drought: Monitoring using the vegetation condition index. Ethiop. J. Environ. Stud. Manag. 2016, 9, 354, doi:10.4314/ejesm.v9i3.9.
67. Liu, W.T.; Kogan, F.N. Monitoring regional drought using the Vegetation Condition Index. Int. J. Remote Sens. 1996, 17, 2761–2782, doi:10.1080/01431169608949106.
68. Nagarajan, R. Drought assessment.; Springer, 2014; ISBN 9789400789920.
69. Winkler, K.; Gessner, U.; Hochschild, V. Identifying Droughts Affecting Agriculture in Africa Based on Remote Sensing Time Series between 2000–2016: Rainfall Anomalies and Vegetation Condition in the Context of ENSO. Remote Sens. 2017, 9, 831, doi:10.3390/rs9080831.
70. Van Rooy, M.P. A RAINFALL ANOMALLY INDEX INDEPENDENT OF TIME AND SPACE, NOTOS. 1965.
71. Palmer, W.C. Meteorological drought. U.S. Weather Bur. Res. Pap. 1965, 45.
72. Byun, H.-R.; Wilhite, D.A. Objective quantification of drought severity and duration. J. Clim. 1999, 12, 2747–2756.
73. Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 2007, 21, 821–833, doi:10.1007/s11269-006-9105-4.
74. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718, doi:10.1175/2009JCLI2909.1.
75. Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. In Proceedings of the Agricultural and Forest Meteorology; Elsevier, 2005; Vol. 133, pp. 69–88.
76. Palmer, W.C. Meteorological drought; US Department of Commerce, Weather Bureau, 1965; Vol. 30;.
77. Palmer, W.C. Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index. Weatherwise 1968, 21, 156–161, doi:10.1080/00431672.1968.9932814.
78. Garen, D.C. Revised Surface‐Water Supply Index for Western United States. J. Water Resour. Plan. Manag. 1993, 119, 437–454, doi:10.1061/(ASCE)0733-9496(1993)119:4(437).
79. Nalbantis, I.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manag. 2009, 23, 881–897, doi:10.1007/s11269-008-9305-1.
80. KOGAN, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419, doi:10.1080/01431169008955102.
81. Parameters | MCST Available online: https://mcst.gsfc.nasa.gov/calibration/parameters (accessed on Jun 9, 2020).
82. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309.
83. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. 1978.
84. ZHANG, F.; ZHANG, L.; WANG, X.; HUNG, J. Detecting Agro-Droughts in Southwest of China Using MODIS Satellite Data. J. Integr. Agric. 2013, 12, 159–168, doi:10.1016/S2095-3119(13)60216-6.
85. Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465.
86. Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173.
87. Huete, A.R.; Liu, H.Q.; Batchily, K. V; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451.
88. Zhang, Q.; Liu, L.; Wei, X. Improved algorithm for image encryption based on DNA encoding and multi-chaotic maps. AEU - Int. J. Electron. Commun. 2014, 68, 186–192, doi:10.1016/j.aeue.2013.08.007.
89. Gao, B.C. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266, doi:10.1016/S0034-4257(96)00067-3.
90. World Droughts in the New Millennium from AVHRR-based Vegetation Health Indices Principles of a New Algorithm. Eos EOS Trans. 2002, 83.
91. S. Pulwarty, R.; Sivakumar, M.V.K. Information systems in a changing climate: Early warnings and drought risk management. Weather Clim. Extrem. 2014, 3, 14–21, doi:10.1016/J.WACE.2014.03.005.
92. Khashei, M.; Bijari, M. An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 2009, 37, 479–489, doi:10.1016/j.eswa.2009.05.044.
93. Hao, Z.; Singh, V.P.; Xia, Y. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Rev. Geophys. 2018, 56, 108–141, doi:10.1002/2016RG000549.
94. Barua, S.; Ng, A.W.M.; Perera, B.J.C. Artificial Neural Network–Based Drought Forecasting Using a Nonlinear Aggregated Drought Index. J. Hydrol. Eng. 2012, 17, 1408–1413, doi:10.1061/(ASCE)HE.1943-5584.0000574.
95. Mislan; Haviluddin; Hardwinarto, S.; Sumaryono; Aipassa, M. Rainfall Monthly Prediction Based on Artificial Neural Network: A Case Study in Tenggarong Station, East Kalimantan - Indonesia. Procedia Comput. Sci. 2015, 59, 142–151, doi:10.1016/J.PROCS.2015.07.528.
96. Morid, S.; Smakhtin, V.; Bagherzadeh, K. Drought forecasting using artificial neural networks and time series of drought indices. Int. J. Climatol. Int. J. Clim. 2007, 27, 2103–2111, doi:10.1002/joc.1498.
97. Wu, X.; Hongxing, C.; Flitma, A. Forecasting monsoon precipitation using artificial neural networks. Adv. Atmos. Sci. 2011, 14, 123–123, doi:10.1007/s00376-997-0014-0.
98. Liou, Y.A.; Liu, S.F.; Wang, W.J. Retrieving soil moisture from simulated brightness temperatures by a neural network. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1662–1672, doi:10.1109/36.942544.
99. Masinde, M. Artificial neural networks models for predicting effective drought index: Factoring effects of rainfall variability. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 1139–1162, doi:10.1007/s11027-013-9464-0.
100. Belayneh, A.; Adamowski, J.; Khalil, B. Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustain. Water Resour. Manag. 2016, 2, 87–101, doi:10.1007/s40899-015-0040-5.
101. Deo, R.C.; Şahin, M. Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia. Atmos. Res. 2015, 161–162, 65–81, doi:10.1016/j.atmosres.2015.03.018.
102. Le, M.H.; Perez, G.C.; Solomatine, D.; Nguyen, L.B. Meteorological Drought Forecasting Based on Climate Signals Using Artificial Neural Network – A Case Study in Khanhhoa Province Vietnam. Procedia Eng. 2016, 154, 1169–1175, doi:10.1016/J.PROENG.2016.07.528.
103. Schubert, S.D.; Stewart, R.E.; Wang, H.; Barlow, M.; Berbery, E.H.; Cai, W.; Hoerling, M.P.; Kanikicharla, K.K.; Koster, R.D.; Lyon, B.; et al. Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits. J. Clim. 2016, 29, 3989–4019, doi:10.1175/JCLI-D-15-0452.1.
104. Roundy, J.K.; Wood, E.F.; Roundy, J.K.; Wood, E.F. The Attribution of Land–Atmosphere Interactions on the Seasonal Predictability of Drought. J. Hydrometeorol. 2015, 16, 793–810, doi:10.1175/JHM-D-14-0121.1.
105. Yang, W.; Seager, R.; Cane, M.A.; Lyon, B.; Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The East African Long Rains in Observations and Models. J. Clim. 2014, 27, 7185–7202, doi:10.1175/JCLI-D-13-00447.1.
106. Lyon, B. Seasonal Drought in the Greater Horn of Africa and Its Recent Increase during the March–May Long Rains. J. Clim. 2014, 27, 7953–7975, doi:10.1175/JCLI-D-13-00459.1.
107. Hoell, A.; Funk, C.; Hoell, A.; Funk, C. The ENSO-Related West Pacific Sea Surface Temperature Gradient. J. Clim. 2013, 26, 9545–9562, doi:10.1175/JCLI-D-12-00344.1.
108. Ethiopia Population (2020) - Worldometer Available online: https://www.worldometers.info/world-population/ethiopia-population/ (accessed on Jun 10, 2020).
109. Worqlul, A.W.; Jeong, J.; Dile, Y.T.; Osorio, J.; Schmitter, P.; Gerik, T.; Srinivasan, R.; Clark, N. Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. Appl. Geogr. 2017, 85, 1–13, doi:10.1016/j.apgeog.2017.05.010.
110. Devereux, S. Food insecurity in Ethiopia: A discussion paper for DFID (Department for International Development). IDS (Institute Dev. Stud. Sussex, UK 2000.
111. Billi, P. Geomorphological landscapes of Ethiopia. In Landscapes and landforms of Ethiopia; Springer, 2015; pp. 3–32.
112. Awulachew, S.; Yilma, A.; Loulseged, M.; Willibad, L.; Ayana, M.; Alamirew, T. Water Resources and Irrigation Development in Ethiopia; Working pa.; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2007;
113. Ambelu, B.A. Biological monitoring based on macroinvertebrates for decision support of water management in Ethiopia. Ghent Univ. Ghent 2009.
114. Terefe, T.; Mengistu, G. Spatial and temporal variability of summer rainfall over Ethiopia from observations and a regional climate model experiment climate model experiments. Theor. Appl. Climatol. 2012, 111.
115. Viste, E.; Korecha, D.; Sorteberg, A. Recent drought and precipitation tendencies in Ethiopia. Theor. Appl. Climatol. 2013, 112, 535–551, doi:10.1007/s00704-012-0746-3.
116. Diro, G.T.; Grimes, D.I.F.; Black, E. Teleconnections between Ethiopian summer rainfall and sea surface temperature: part I—observation and modelling. Clim. Dyn. 2011, 37, 103–119.
117. Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901-2010. Environ. Dev. 2013, 6, 69–79, doi:10.1016/j.envdev.2013.03.007.
118. Gonfa, L. Climate classifications of Ethiopia; National Meteorological Services Agency, 1996;
119. Birhane, E.; Ashfare, H.; Fenta, A.A.; Hishe, H.; Gebremedhin, M.A.; Solomon, N. Land use land cover changes along topographic gradients in Hugumburda national forest priority area, Northern Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 13, 61–68.
120. Liou, Y.-A.; Le, M.S.; Chien, H. Normalized Difference Latent Heat Index for Remote Sensing of Land Surface Energy Fluxes. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1423–1433, doi:10.1109/TGRS.2018.2866555.
121. Larbi, I.; Hountondji, F.; Annor, T.; Agyare, W.; Mwangi Gathenya, J.; Amuzu, J.; Larbi, I.; Hountondji, F.C.C.; Annor, T.; Agyare, W.A.; et al. Spatio-Temporal Trend Analysis of Rainfall and Temperature Extremes in the Vea Catchment, Ghana. Climate 2018, 6, 87, doi:10.3390/cli6040087.
122. Muthoni, F.K.; Odongo, V.O.; Ochieng, J.; Mugalavai, E.M.; Mourice, S.K.; Hoesche-Zeledon, I.; Mwila, M.; Bekunda, M. Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa. Theor. Appl. Climatol. 2018, 1–14, doi:10.1007/s00704-018-2712-1.
123. McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. data 2017, 4, 170012.
124. Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363, doi:10.1038/43854.
125. Qin, Y.; Yang, D.; Lei, H.; Xu, K.; Xu, X. Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960–2010. J. Hydrol. 2015, 526, 55–67.
126. Gallo, K.; Ji, L.; Reed, B.; Dwyer, J.; Eidenshink, J. Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data. Geophys. Res. Lett. 2004, 31, n/a-n/a, doi:10.1029/2003GL019385.
127. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718, doi:10.1175/2009JCLI2909.1.
128. Yu, C.; Li, C.; Xin, Q.; Chen, H.; Zhang, J.; Zhang, F.; Li, X.; Clinton, N.; Huang, X.; Yue, Y.; et al. Dynamic assessment of the impact of drought on agricultural yield and scale-dependent return periods over large geographic regions. Environ. Model. Softw. 2014, 62, 454–464, doi:10.1016/J.ENVSOFT.2014.08.004.
129. Meza, F.J. Recent trends and ENSO influence on droughts in Northern Chile: An application of the Standardized Precipitation Evapotranspiration Index. Weather Clim. Extrem. 2013, 1, 51–58, doi:10.1016/J.WACE.2013.07.002.
130. Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55, doi:10.2307/210739.
131. Barton, D.E.; Abramovitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. J. R. Stat. Soc. Ser. A 1965, 128, 593, doi:10.2307/2343473.
132. Baniya, B.; Tang, Q.; Xu, X.; Haile, G.G.; Chhipi-Shrestha, G. Spatial and Temporal Variation of Drought Based on Satellite Derived Vegetation Condition Index in Nepal from 1982−2015. Sensors (Basel). 2019, 19, doi:10.3390/s19020430.
133. Measho, S.; Chen, B.; Trisurat, Y.; Pellikka, P.; Guo, L.; Arunyawat, S.; Tuankrua, V.; Ogbazghi, W.; Yemane, T. Spatio-Temporal Analysis of Vegetation Dynamics as a Response to Climate Variability and Drought Patterns in the Semiarid Region, Eritrea. Remote Sens. 2019, 11, 724, doi:10.3390/rs11060724.
134. Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196, doi:10.1016/S0022-1694(97)00125-X.
135. Baniya, B.; Tang, Q.; Xu, X.; Haile, G.G.; Chhipi-Shrestha, G. Spatial and Temporal Variation of Drought Based on Satellite Derived Vegetation Condition Index in Nepal from 1982−2015. Sensors (Basel). 2019, 19, doi:10.3390/s19020430.
136. de Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702, doi:10.1016/J.RSE.2010.10.011.
137. Sobrino, J.A.; Julien, Y. Global trends in NDVI-derived parameters obtained from GIMMS data. Int. J. Remote Sens. 2011, 32, 4267–4279, doi:10.1080/01431161.2010.486414.
138. Julien, Y.; Sobrino, J.A.; Mattar, C.; Ruescas, A.B.; Jiménez-Muñoz, J.C.; Sòria, G.; Hidalgo, V.; Atitar, M.; Franch, B.; Cuenca, J. Temporal analysis of normalized difference vegetation index (NDVI) and land surface temperature (LST) parameters to detect changes in the Iberian land cover between 1981 and 2001. Int. J. Remote Sens. 2011, 32, 2057–2068, doi:10.1080/01431161003762363.
139. Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389, doi:10.1080/01621459.1968.10480934.
140. Tian, F.; Wang, Y.; Fensholt, R.; Wang, K.; Zhang, L.; Huang, Y. remote sensing Mapping and Evaluation of NDVI Trends from Synthetic Time Series Obtained by Blending Landsat and MODIS Data around a Coalfield on the Loess Plateau. Remote Sens 2000, 5, 4255–4279, doi:10.3390/rs5094255.
141. Behrangi, A.; Nguyen, H.; Granger, S. Probabilistic Seasonal Prediction of Meteorological Drought Using the Bootstrap and Multivariate Information. J. Appl. Meteorol. Climatol. 2015, 54, 1510–1522, doi:10.1175/JAMC-D-14-0162.1.
142. Seo, Y.; Kim, S. River Stage Forecasting Using Wavelet Packet Decomposition and Data-driven Models. Procedia Eng. 2016, 154, 1225–1230, doi:10.1016/J.PROENG.2016.07.439.
143. Schuman, C.D.; Birdwell, J.D. Dynamic Artificial Neural Networks with Affective Systems. PLoS One 2013, 8, e80455, doi:10.1371/journal.pone.0080455.
144. Poulton, M.M. Chapter 3 Multi-layer perceptrons and back-propagation learning; Pergamon, 2001; Vol. 30; ISBN 9780080439860.
145. Riedmiller, M.; Riedmiller, M.; Braun, H. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. IEEE Int. Conf. NEURAL NETWORKS 1993, 16, 586--591.
146. Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241, doi:10.1029/1998WR900018.
147. Nash, J.E.; Sutcliffe, J. V River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290.
148. Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97.
149. Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194, doi:10.1080/02723646.1981.10642213.
150. Bayissa, Y.; Tadesse, T.; Demisse, G.; Shiferaw, A.; Bayissa, Y.; Tadesse, T.; Demisse, G.; Shiferaw, A. Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2017, 9, 669, doi:10.3390/rs9070669.
151. Stojanovic, M.; Liberato, M.L.R.; Sorí, R.; Vázquez, M.; Phan-Van, T.; Duongvan, H.; Hoang Cong, T.; Nguyen, P.N.B.; Nieto, R.; Gimeno, L. Trends and extremes of drought episodes in Vietnam sub-regions during 1980–2017 at different timescales. Water 2020, 12, 813.
152. Edossa, D.C.; Babel, M.S.; Gupta, A. Das Drought analysis in the Awash River Basin, Ethiopia. Water Resour. Manag. 2010, 24, 1441–1460, doi:10.1007/s11269-009-9508-0.
153. Bayissa, Y.; Maskey, S.; Tadesse, T.; Van Andel, S.J.; Moges, S.; Van Griensven, A.; Solomatine, D. Comparison of the performance of six drought indices in characterizing historical drought for the upper Blue Nile basin, Ethiopia. Geosciences 2018, 8, 81.
154. Bayissa, Y.; Tadesse, T.; Demisse, G.; Shiferaw, A. Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2017, 9, 669, doi:10.3390/rs9070669.
155. Degefu, M.A.; Rowell, D.P.; Bewket, W. Teleconnections between Ethiopian rainfall variability and global SSTs: observations and methods for model evaluation. Meteorol. Atmos. Phys. 2017, 129, 173–186, doi:10.1007/s00703-016-0466-9.
156. Kassahun, B. Weather systems over Ethiopia. In Proceedings of the Proceedings of First Technical conference on meteorological research in Eastern and Southern Africa. Kenya Meteorological Department, Nairobi, Kenya; 1987; pp. 53–57.
157. Karoly, D.J. Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 1989, 2, 1239–1252.
158. Alemu, A.; Korecha, D.; Mohamod, M. Impacts of Various ENSO Phases on Cereal Crop Productivity in the Upper Awash Basin, Central High Land of Ethiopia. In Proceedings of the Proceedings of the International Conference on Impact of El Niño on Biodiversity, Agriculture, and Food Security, 23–24 February 2017, Harayama University, Ethiopia; 2017; pp. 3–18.
159. Workie, T.G.; Debella, H.J. Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. Glob. Ecol. Conserv. 2018, 13, e00366, doi:10.1016/J.GECCO.2017.E00366.
160. Ravindrababu, S.; Ratnam, M.; Basha, G.; Liou, Y.-A.; Reddy, N. Large Anomalies in the Tropical Upper Troposphere Lower Stratosphere (UTLS) Trace Gases Observed during the Extreme 2015–16 El Niño Event by Using Satellite Measurements. Remote Sens. 2019, 11, 687, doi:10.3390/rs11060687.
161. Anyamba, A.; Glennie, E.; Small, J.; Anyamba, A.; Glennie, E.; Small, J. Teleconnections and Interannual Transitions as Observed in African Vegetation: 2015–2017. Remote Sens. 2018, 10, 1038, doi:10.3390/rs10071038.
162. Cochrane, L.; Bekele, Y.W. Average crop yield (2001–2017) in Ethiopia: Trends at national, regional and zonal levels. Data Br. 2018, 16, 1025–1033, doi:10.1016/j.dib.2017.12.039.
163. Korecha, D.; Barnston, A.G.; Korecha, D.; Barnston, A.G. Predictability of June–September Rainfall in Ethiopia. Mon. Weather Rev. 2007, 135, 628–650, doi:10.1175/MWR3304.1.
164. Yan, D.; Xu, T.; Girma, A.; Yuan, Z.; Weng, B.; Qin, T.; Do, P.; Yuan, Y.; Yan, D.; Xu, T.; et al. Regional Correlation between Precipitation and Vegetation in the Huang-Huai-Hai River Basin, China. Water 2017, 9, 557, doi:10.3390/w9080557.
165. Zhao, W.; Zhao, X.; Zhou, T.; Wu, D.; Tang, B.; Wei, H. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts. PLoS One 2017, 12, e0175379, doi:10.1371/journal.pone.0175379.
166. Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–50, doi:10.1007/s10654-016-0149-3.
167. Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531, doi:10.1111/gcb.12945.
168. Allam, M.M.; Jain Figueroa, A.; McLaughlin, D.B.; Eltahir, E.A.B. Estimation of evaporation over the upper Blue Nile basin by combining observations from satellites and river flow gauges. Water Resour. Res. 2016, 52, 644–659, doi:10.1002/2015WR017251.
169. Tekleab, S.; Mohamed, Y.; Uhlenbrook, S. Hydro-climatic trends in the Abay/Upper Blue Nile basin, Ethiopia. Phys. Chem. Earth, Parts A/B/C 2013, 61–62, 32–42, doi:10.1016/J.PCE.2013.04.017.
170. Samy, A.; Ibrahim, M.G.; Mahmod, W.E.; Fujii, M.; Eltawil, A.; Daoud, W. Statistical Assessment of Rainfall Characteristics in Upper Blue Nile Basin over the Period from 1953 to 2014. Water 2019, 11, 468, doi:10.3390/w11030468.
171. Broman, D.; Rajagopalan, B.; Hopson, T.; Gebremichael, M. Spatial and temporal variability of East African Kiremt season precipitation and large‐scale teleconnections. Int. J. Climatol. 2020, 40, 1241–1254, doi:10.1002/joc.6268.
172. Giannini, A.; Biasutti, M.; Held, I.M.; Sobel, A.H. A global perspective on African climate. Clim. Change 2008, 90, 359–383.
173. Siam, M.S.; Wang, G.; Demory, M.E.; Eltahir, E.A.B. Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River. Clim. Dyn. 2014, 43, 1011–1023, doi:10.1007/s00382-014-2132-6.
174. Diro, G.T.; Grimes, D.I.F.; Black, E. Teleconnections between Ethiopian summer rainfall and sea surface temperature: Part II. Seasonal forecasting. Clim. Dyn. 2011, 37, 121–131, doi:10.1007/s00382-010-0896-x.
175. Alhamshry, A.; Fenta, A.A.; Yasuda, H.; Shimizu, K.; Kawai, T. Prediction of summer rainfall over the source region of the Blue Nile by using teleconnections based on sea surface temperatures. Theor. Appl. Climatol. 2019, 137, 3077–3087, doi:10.1007/s00704-019-02796-x.
176. Segele, Z.T.; Lamb, P.J.; Leslie, L.M. Seasonal-to-Interannual Variability of Ethiopia/Horn of Africa Monsoon. Part I: Associations of Wavelet-Filtered Large-Scale Atmospheric Circulation and Global Sea Surface Temperature. J. Clim. 2009, 22, 3396–3421, doi:10.1175/2008JCLI2859.1.
177. Berhane, F.; Zaitchik, B.; Dezfuli, A. Subseasonal analysis of precipitation variability in the Blue Nile River Basin. J. Clim. 2014, 27, 325–344, doi:10.1175/JCLI-D-13-00094.1.
178. Gebremicael, T.G.; Mohamed, Y.A.; Betrie, G.D.; van der Zaag, P.; Teferi, E. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. J. Hydrol. 2013, 482, 57–68, doi:10.1016/j.jhydrol.2012.12.023.
179. Coffel, E.D.; Keith, B.; Lesk, C.; Horton, R.M.; Bower, E.; Lee, J.; Mankin, J.S. Future Hot and Dry Years Worsen Nile Basin Water Scarcity Despite Projected Precipitation Increases. Earth’s Futur. 2019, 7, 967–977, doi:10.1029/2019EF001247.
180. DeSA, U.N. World population prospects: the 2012 revision. Popul. Div. Dep. Econ. Soc. Aff. United Nations Secr. New York 2013, 18.
181. Conway, D. The climate and hydrology of the Upper Blue Nile river. Geogr. J. 2000, 166, 49–62, doi:10.1111/j.1475-4959.2000.tb00006.x.
182. Wagesho, N.; Goel, N.K.; Jain, M.K. Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrol. Sci. J. 2013, 58, 354–373, doi:10.1080/02626667.2012.754543.
183. Mellander, P.-E.; Gebrehiwot, S.G.; Gärdenäs, A.I.; Bewket, W.; Bishop, K. Summer Rains and Dry Seasons in the Upper Blue Nile Basin: The Predictability of Half a Century of Past and Future Spatiotemporal Patterns. PLoS One 2013, 8, e68461, doi:10.1371/journal.pone.0068461.
184. Günther, F.; Fritsch, S. neuralnet: Training of neural networks. R J. 2010, 2, 30–38.
185. Remesan, R.; Mathew, J. Hydrological data driven modelling: A case study approach; 2015; ISBN 9783319092355.
186. Sheela, K.G.; Deepa, S.N. Review on methods to fix number of hidden neurons in neural networks. Math. Probl. Eng. 2013, 2013, doi:10.1155/2013/425740.
187. Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147, doi:10.1080/01431160802549278.
188. Beck, M.W. NeuralNetTools: Visualization and analysis tools for neural networks. J. Stat. Softw. 2018, 85, 1, doi:10.18637/jss.v085.i11.
189. Garson, G.D. A Comparison of Neural Network and Expert Systems Algorithms with Common Multivariate Procedures for Analysis of Social Science Data. Soc. Sci. Comput. Rev. 1991, 9, 399–434, doi:10.1177/089443939100900304. |