博碩士論文 107225014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.137.223.8
姓名 劉培民(Pei-Ming Liu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 群集成對混合反應變數的強韌概似分析
(Robust likelihood analysis of cluster paired mixed data)
相關論文
★ 不需常態假設與不受離群值影響的選擇迴歸模型的方法★ 用卜瓦松與負二項分配建構非負連續隨機變數平均數之概似函數
★ 強韌變異數分析★ 用強韌概似函數分析具相關性之二分法資料
★ 利用Bartlett第二等式來估計有序資料的相關性★ 相關性連續與個數資料之強韌概似分析
★ 不偏估計函數之有效性比較★ 一個分析相關性資料的新方法-複合估計方程式
★ (一)加權概似函數之強韌性探討 (二)影響代謝症候群短期發生及消失的相關危險因子探討★ 利用 Bartlett 第二等式來推論模型假設錯誤下的變異數函數
★ (一)零過多的個數資料之變異數函數的強韌推論 (二)影響糖尿病、高血壓短期發生的相關危險因子探討★ 一個分析具相關性的連續與比例資料的簡單且強韌的方法
★ 時間數列模型之統計推論★ 複合概似函數有效性之探討
★ 決定分析相關性資料時統計檢定力與樣本數的普世強韌法★ 檢定DNA鹼基替換模型的新方法 - 考慮不同DNA鹼基間的相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在醫學與其他研究領域中,常會出現群集成對的連續與離散資料,如家庭中每一位成員的血壓值與是否得到癌症。由於這種相關性資料不容易找到合適的模型,因此在分析上較為困難。
本文主要的目的是在廣義線性模型下,利用強韌概似函數方法,來分析群集中成對的混合型資料。我們建立參數之強韌概似函數,在不需要特別對於群集中成對的反應變數間及群集中不同成員的反應變數間之二層相關性建立模型的假設下,仍可得到正確的統計推論。
摘要(英) In medicine and other fields of research, cluster pairs of continuous and discrete data are common, such as the blood pressure value of each member of the family and whether they have cancer. It is hard to find a suitable model to analyze this correlated data.
In this thesis, we propose a robust likelihood function method under the generalized linear model to analyze the cluster paired mixed data. Using this robust likelihood function, we can make correct statistic inferences without modeling the two-layer correlation between the same unit within a cluster and for different members within the same cluster.
關鍵字(中) ★ 相關性資料
★ 強韌概似函數
★ 群集
★ 混合型資料
關鍵字(英) ★ Paired mixed data
★ Robust likelihood function
★ Score test
★ Clustered data
論文目次 摘要 i
Abstract ii
致謝辭 iii
目錄 iv
表目錄 v
第一章 緒論 1
第二章 伯努利-常態混合模型 2
2.1伯努利-常態混合模型可被強韌化 3
2.2強韌化伯努利-常態實作模型 4
2.3簡單迴歸下之修正項 和 9
2.4簡單迴歸下之強韌變異數估計量 14
2.5簡單迴歸下之假設檢定 15
2.6簡單迴歸且解釋變數為連續 18
2.7簡單迴歸且解釋變數為離散 21
第三章 模擬研究 25
3.1資料生成 25
3.2模擬結果分析 30
第四章 實例分析 57
第五章 結論 61
參考文獻 62
參考文獻 Fitzmaurice, G. M. and Laird, N. M. (1995). Regression models for a bivariate discrete and continuous outcome with clustering. Journal of the American Statistical Association, 90: 845-852.
Royall, R. M. and Tsou, T. S. (2003). Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions. Journal of the Royal Statistical Society, Series B, 65: 391-104.
Tsou, T. S. and Chen, C. H. (2008). Comparing several means of dependent populations of count-A parametric robust approach. Statistics in Medicine, 27: 2576-2585.
Tsou, T. S. (2009). Performing legitimate parametric regression analysis without knowing the
true underlying random mechanisms. Communications in Statistics-Theory and Mechanisms, 38: 1680-1689.
指導教授 鄒宗山(Tsung-Shan Tsou) 審核日期 2020-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明