參考文獻 |
Assareh, H., Smith, I., and Mengersen, K., 2015. Change point detection in risk adjusted control charts. Statistical Methods in Medical Reasearch 24, 747–768.
Burr, W. I., 1979. Elementary Statistical Quality Control. Dekker, New York.
Casella, G. and Berger, R. L., 2002. Statistical Inference. Duxbury, California.
Dette, H. and Wied, D. 2016. Detecting relevant changes in time series models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78(2), 371-394.
Duran, R. I. and Albin, S. L., 2009. Monitoring a fraction with easy and reliable settings of the false alarm rate. Quality and Reliability Engineering International 25, 1026-1043.
Efron, B. and Tibshirani, R. J., 1993. An Introduction to the Bootstrap. Chapman & Hall, London.
Emura, T. and Lin, Y. S., 2015. A comparison of normal approximation rules for attribute control charts. Quality and Reliability Enginerring International 31, 411–418.
Emura, T., Chen, Y. H., and Chen, H. Y., 2012. Survival prediction based on compound covariate under cox proportional hazard models. PLoS ONE 7(10), e47627. doi:10.1371/journal.pone.0047627.
Emura, T., Kao, F. S., and Michimae, H., 2014. An improved nonparametric estimator of sub-distribution function for bivariate competing risk models. Journal of Multivariate Analysis 132, 229-241.
Emura, T. and Ho, Y. T., 2016. A decision theoretic approach to change point estimation for binomial CUSUM control charts. Sequential Analysis 35(2), 238-253.
Emura, T. and Liao, Y. T., 2018. Critical review and comparison of continuity correction methods: the normal approximation to the binomial distribution. Communication in Statistics - Simulation and Computation 47(8), 2266-2285.
Emura, T., Long, T. H., and Sun, L. H., 2017. R routines for performing estimation and statistical process control under copula-based time series model. Communication in Statistics - Simulation and Computation 46(4), 3067-3087.
Faugeras, Olivier P., 2017. Inference for copula modeling of discrete data: a cautionary tale and some facts. Depend. Model 5(1), 121-132.
Fuh, C. D. and Mei, Y., 2008. Optimal stationary binary quantizer for decentralized quickest change detection in hidden markov models. 11th International Conference on Information Fusion, Cologne, 1-8.
Genest, C. and Nešlehová, J., 2007. A primer on copulas for count data. The Astin Bulletin 37, 475-515.
Genest, C., Nešlehová, J., and Rémillard, B., 2017. Asymptotic behavior of the empirical multilinear copula process under broad conditions. Journal of Multivariate Analysis 159, 82-110.
Genest, C. and MacKay, R. J., 1986. Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données. Canadian Journal of Statistics 14(2), 145-159.
Grigg, O. A., Farewell, V. T., and Spiegelhalter, D. J., 2003. Use of risk-adjusted CUSUM and RSPRT charts for monitoring in medical contexts. Statistical Methods in Medical Research 12, 147-170.
Hawkins, D. M. and Olwell, D. H., 1998. Cumulative Sum Charts and Charting for Quality Improvement. Wiley, New York.
Higgins, J. and Green, S., 2008. Cochrance Handbook for Systematic Reviews of Interventions. Wiley, New York.
Hollander, M. and Wolfe, D. A., 1973. Nonparametric Statistical Methods. Wiley, New York.
Huang, X. W., Chen, W. R. and Emura, T., 2019. A control chart using a copula-based Markov chain for attribute data. under revision.
Huang, X. W. and Emura, T., 2019. Model diagnostic procedures for copula-based Markov chain models for statistical process control. Communication in Statistics - Simulation and Computation. doi: 10.1080/03610918.2019.1602647.
Huang, X. W., Wang, W. and Emura, T., 2020. A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics and Data Science. under revision.
James, W. and Stein, C., 1961. Estimation with quadratic loss. Proceedings of Fourth Berkeley Symposium on Mathematical Statistics and Probability 1, 361-379.
Khan, R. A., 2008. Distributional properties of CUSUM stopping times. Sequential Analysis 27, 420-434.
Khan, R. A. and Khan, M. K., 2004. On the use of the SPRT in determining the properties of some CUSUM procedures. Sequential Analysis 23, 355-378.
Kim, J. M., Baik, J. and Reller, M., 2019. Control charts of mean and variance using copula Markov SPC and conditional distribution by copula. Communication in Statistics - Simulation and Computation. doi: 10.1080/03610918.2018.1547404.
Knight. K., 2000. Mathematical Statistics. Chapman & Hall, New York.
Kojadinovic, I., 2017. Some copula inference procedures adapted to the presence of ties. Computational Statistics & Data Analysis 112, 24-41.
Laheetharan, A. and Wijekoon, P., 2010. Improved estimation of the population parameters when some additional information is available. Statistical Papers 51, 889-914.
Lehmann, E. L., 1975. Nonparametric: Statistical Methods Based on Ranks. Holden-Day, San Francisco.
Long, T. H. and Emura, T., 2014. A control chart using copula-based Markov chain models. Journal of the Chinese. Statistical Association 52, 466-496.
McDonald, L., 2014. Does Newton−Raphson really fail? Stat Methods Med Res 23(3), 308-311.
Montgomery, D. C., 2009. Introduction to Statistical Quality Control. Wiley, New York.
Nagaraj, N. K., 1990. Two-sided tests for change in level for correlated data. Statistical Papers 31, 181-194.
Nelsen, R. B., 2006. An Introduction to Copulas. Springer, New York.
Page, E. S., 1954. Continuous inspection schemes. Biometrika 41, 100-114.
Perry, M. B. and Pignatiello, J. J., 2008. A change point model for the location parameter of exponential family densities. IIE Transactions 40(10), 947-956.
Perry, M. B. and Pignatiello, J. J., 2005. Estimation of the change point of the process fraction nonconforming in SPC applications. Interational Journal of Reliability Quality and Safety Engineering 12(02), 95-110.
Perry, M. B., Pignatiello, J. J., and Simpson, J. R., 2007. Estimating the change point of the process fraction nonconforming with a monotonic change disturbance in SPC. Quality and Reliability Engineering Inernational 23, 327-339.
Pignatiello, J. J. and Samuel, T. R., 2000. Identifying the time of a step change in the process fraction nonconforming. Quality Engineering 13(3), 357-365.
Rossi, G., Sarto, S. D., and Marchi, M. A., 2014. New risk-adjusted Bernoulli cumulative sum chart for monitoring binary health data. Statistical Methods in Medical Reasearch. doi: 10.1177/0962280214530883.
Sklar, A., 1959. Fonctions de re′partition a′n dimensions et leurs marges. Publica-tions de l′Intitut de Statistique de l′Universit de Paris 8, 229-231.
Sun, L. H., Huang, X. W., Alqawba, M., Kim, J. M. and Emura, T., 2020. Copula-based Markov Models for Time Series-Parametric Inference and Process Control. Springer, New York.
Teng, H. W. and Fuh, C. D., 2020. Simulating false alarm probability in K-distributed sea clutter. Communication in Statistics - Simulation and Computation. doi: 10.1080/03610918.2020.1757707.
Wang, H., 2009. Comparison of p control charts for low defective rate. Computation Statistics & Data Analysis 53(12), 4210-4220.
Wald, A., 1947. Sequential Analysis. Wiley, New York.
Wetherill, G. B. and Brown, D. B., 1991. Statistical Process Control: Theory and Practice. Chapman and Hall, London.
Wencheko, E. and Wijekoon, P., 2005. Improved estimation of the mean in one-parameter exponential families with known coefficient of variation. Statistical Papers 46, 101-115. |