博碩士論文 107525009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.137.198.232
姓名 莊家閔(Chia-Min Chuang)  查詢紙本館藏   畢業系所 軟體工程研究所
論文名稱 使用預訓練編碼器提升跨語言摘要能力
(Improving Cross-Lingual Text Summarization using Pretrained Encoder)
相關論文
★ A Real-time Embedding Increasing for Session-based Recommendation with Graph Neural Networks★ 基於主診斷的訓練目標修改用於出院病摘之十代國際疾病分類任務
★ 混合式心臟疾病危險因子與其病程辨識 於電子病歷之研究★ 基於 PowerDesigner 規範需求分析產出之快速導入方法
★ 社群論壇之問題檢索★ 非監督式歷史文本事件類型識別──以《明實錄》中之衛所事件為例
★ 應用自然語言處理技術分析文學小說角色 之關係:以互動視覺化呈現★ 基於生醫文本擷取功能性層級之生物學表徵語言敘述:由主成分分析發想之K近鄰算法
★ 基於分類系統建立文章表示向量應用於跨語言線上百科連結★ Code-Mixing Language Model for Sentiment Analysis in Code-Mixing Data
★ 應用角色感知於深度神經網路架構之對話行為分類★ 藉由加入多重語音辨識結果來改善對話狀態追蹤
★ 主動式學習之古漢語斷詞★ 對話系統應用於中文線上客服助理:以電信領域為例
★ 應用遞歸神經網路於適當的時機回答問題★ 使用多任務學習改善使用者意圖分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 跨語言文本摘要是透過機器將一種語言的文章轉換成另
一種語言的摘要,先前的研究大多將該任務以兩步驟方法處
理──「先翻譯後摘要」或「先摘要後翻譯」。但是,這兩
種方法皆會有翻譯錯誤的問題,且其中的機器翻譯模型難以
隨著摘要任務繼續更新微調(fine-tune)。針對上述問題,
我們採用預訓練跨語言編碼器以向量表示(represent)不同
語言的輸入,將其映射至相同的向量空間。預訓練方法已被
廣泛應用在各種自然語言生成任務中,並取得優異的模型表
現。此編碼器使得模型在學習摘要能力的過程中,同時保有
跨語言能力。本研究中,我們實驗三種不同的微調方法,
證明預訓練跨語言編碼器可以學習單詞階層(word-level)
的語意特徵。在我們所有的模型組態裡,最優異的模型可
在ROUGE-1分數上,超越基準模型3分。
摘要(英) Cross-lingual text summarization (CLTS) is the task to generate a summary in one language given a document in a another language. Most of the previous work consider CLTS as two sub-tasks: translate-then-summarize and summarize-then-translate. Both of them are suffered from translation error and the translation system is hard to be fine-tuned with text summarization directly. To
deal with the above problems, we utilize a pretrained cross-lingual encoder, which has been demonstrated the effectiveness in natural language generation, to represent text inputs from from different languages. We augment a standard sequence-to-sequence (Seq2Seq) network with our pretrained cross-lingual encoder so as to capture cross-lingual contextualized word representation. We show that the pretrained cross-lingual encoder can be fine-tuned on a text summarization dataset while keeping the cross-lingual ability. We experiment three different fine-tune strategies and show that the pretrained encoder can capture cross-lingual semantic features. The best of the proposed models obtains 42.08 Rouge-1 on ZH2ENSUM datasets [Zhu et al., 2019], significantly improving
our baseline model by more than 3 Rouge-1.
關鍵字(中) ★ 文本摘要
★ 預訓練模型
★ 跨語言處理
關鍵字(英) ★ Summarization
★ Pretraining language model
★ Cross-lingual
論文目次 Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . i
English Abstract . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . iv
Content . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figure . . . . . . . . . . . . . . . . . . . . . . . viii
List of Table . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction . . . . . . . . . . . . . . . . . . 1
2 Related Work . . . . . . . . . . . . . . . . . 4
2.1 End-to-end Cross-lingual Language Generation
. . . . . . . . . . . . . . . . . . . 4
2.2 Cross-lingual Pretraining . . . . . . . . . . 6
3 Method . . . . . . . . . . . . . . . . . . . . 8
3.1 Transformer . . . . . . . . . . . . . . . . 8
3.2 Baseline Model . . . . . . . . . . . . . . . 10
3.3 Weights Transformation . . . . . . . . . . 12
v
3.4 Pretrained Cross-lingual Masked Language
Model . . . . . . . . . . . . . . . . . . . 12
3.5 Cross-lingual Contextualized Word Representations
. . . . . . . . . . . . . . . . . . 13
3.5.1 Cross-lingual Encoder (CLTS-XENC) . . . . . 15
3.5.2 Cross-lingual ELMo (CLTS-ELMo) . . . . . . 15
4 Experiments . . . . . . . . . . . . . . . . . . 17
4.1 Datasets . . . . . . . . . . . . . . . . . . 17
4.2 Evaluation Metrics . . . . . . . . . . . . . 18
4.3 Training Details . . . . . . . . . . . . . . 20
4.4 Result and Analysis . . . . . . . . . . . . . 21
4.4.1 Fine-Tuning Strategies . . . . . . . . . . . . 22
4.4.2 Pretraining Steps . . . . . . . . . . . . . . . 23
4.4.3 Cross-lingual Word Embeddings . . . . . . . 24
4.4.4 Human Evaluation . . . . . . . . . . . . . . 27
5 Conclusion and Future Work . . . . . . . . . 30
5.1 Conclusion . . . . . . . . . . . . . . . . . 30
5.2 Future Work . . . . . . . . . . . . . . . . 31
5.2.1 Adversarial Training . . . . . . . . . . . . . 32
5.2.2 Multi-task Learning . . . . . . . . . . . . . . 33
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . 40
A.1 Cross-lingual Text Summarization Examples 40
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . 43
vi
B.1 Round-Trip Translation . . . . . . . . . . . 43
參考文獻 Hanan Aldarmaki and Mona Diab. Context-aware cross-lingual
mapping. arXiv preprint arXiv:1903.03243, 2019.
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. arXiv preprint arXiv:1607.06450, 2016.
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.
Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian-Ling Mao,
and Heyan Huang. Cross-lingual natural language generation via
pre-training. arXiv preprint arXiv:1909.10481, 2019.
Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic
Denoyer, and Hervé Jégou. Word translation without parallel
data. arXiv preprint arXiv:1710.04087, 2017.
Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams,
Samuel R Bowman, Holger Schwenk, and Veselin Stoyanov.
Xnli: Evaluating cross-lingual sentence representations. arXiv
preprint arXiv:1809.05053, 2018.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805,
2018.
Sergey Edunov, Alexei Baevski, and Michael Auli. Pre-trained
language model representations for language generation. arXiv
preprint arXiv:1903.09722, 2019.
Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and
Yann N Dauphin. Convolutional sequence to sequence learning.
arXiv preprint arXiv:1705.03122, 2017.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.
Jeremy Howard and Sebastian Ruder. Universal language
model fine-tuning for text classification. arXiv preprint
arXiv:1801.06146, 2018.
Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.
Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-
Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan,Wade
Shen, Christine Moran, Richard Zens, et al. Moses: Open source
toolkit for statistical machine translation. In Proceedings of the
45th annual meeting of the association for computational linguistics
companion volume proceedings of the demo and poster sessions,
pages 177–180, 2007.
Vishwajeet Kumar, Nitish Joshi, Arijit Mukherjee, Ganesh Ramakrishnan,
and Preethi Jyothi. Cross-lingual training for automatic
question generation. arXiv preprint arXiv:1906.02525,
2019.
Guillaume Lample and Alexis Conneau. Cross-lingual language
model pretraining. arXiv preprint arXiv:1901.07291, 2019.
Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out, pages 74–81, 2004.
Edward Loper and Steven Bird. Nltk: the natural language toolkit.
arXiv preprint cs/0205028, 2002.
Minh-Thang Luong, Hieu Pham, and Christopher D Manning.
Bilingual word representations with monolingual quality in mind.
In Proceedings of the 1st Workshop on Vector Space Modeling for
Natural Language Processing, pages 151–159, 2015.
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.
Aitor Ormazabal, Mikel Artetxe, Gorka Labaka, Aitor Soroa, and
Eneko Agirre. Analyzing the limitations of cross-lingual word
embedding mappings. arXiv preprint arXiv:1906.05407, 2019.
Jessica Ouyang, Boya Song, and Kathleen McKeown. A robust abstractive
system for cross-lingual summarization. In Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2025–2031,
2019.
Matthew E Peters,Waleed Ammar, Chandra Bhagavatula, and Russell
Power. Semi-supervised sequence tagging with bidirectional
language models. arXiv preprint arXiv:1705.00108, 2017.
Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer.
Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.
Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is
multilingual bert? arXiv preprint arXiv:1906.01502, 2019.
Martin Popel and Ondˇrej Bojar. Training tips for the transformer
model. The Prague Bulletin of Mathematical Linguistics, 110(1):
43–70, 2018.
Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. URL https://s3-us-west-2. amazonaws. com/openaiassets/
researchcovers/languageunsupervised/language understanding
paper. pdf, 2018.
Sebastian Ruder, Ivan Vuli´c, and Anders Søgaard. A survey of
cross-lingual word embedding models. Journal of Artificial Intelligence
Research, 65:569–631, 2019.
Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine
translation of rare words with subword units. arXiv preprint
arXiv:1508.07909, 2015.
Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information
processing systems, pages 3104–3112, 2014.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.
Xiaojun Wan, Huiying Li, and Jianguo Xiao. Cross-language document
summarization based on machine translation quality pre-
diction. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 917–926. Association
for Computational Linguistics, 2010.
Shijie Wu and Mark Dredze. Beto, bentz, becas: The surprising
cross-lingual effectiveness of bert. arXiv preprint
arXiv:1904.09077, 2019.
Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio.
Show, attend and tell: Neural image caption generation with
visual attention. In International conference on machine learning,
pages 2048–2057, 2015.
Junnan Zhu, Qian Wang, Yining Wang, Yu Zhou, Jiajun Zhang,
Shaonan Wang, and Chengqing Zong. Ncls: Neural cross-lingual
summarization. arXiv preprint arXiv:1909.00156, 2019.
指導教授 蔡宗翰(Tzong-Han Tsai) 審核日期 2020-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明