參考文獻 |
[1] J. Kim, J. Hwang, K. J. Lee, and I. Lee, Blockwise amplify-and-forward relaying strategies for multipoint-to multipoint MIMO networks," IEEE Trans. Wireless Commun., vol. 10, pp. 2028-2033, Jul. 2011.
[2] F. Khan, Y. Chen, and M. Alouini, Novel receivers for AF relaying with distributed STBC using cascaded and disintegrated channel estimation," IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1370-1379, Apr. 2012.
[3] T. Q. Duong, G. C. Alexandropoulos, H. Zepernick, and T. A. Tsiftsis, Orthogonal space-time block codes with CSI-assisted amplify-and-forward relaying in correlated Nakagami-m fading channels," IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 882-889, Mar. 2011.
[4] Z. Li, X. G. Xia, and M. H. Lee, A simple orthogonal space-time coding scheme for asynchronous cooperative systems for frequency selective fading channels," IEEE Trans. Commun., vol. 58, no. 8, pp. 2219-2224, Aug. 2010.
[5] X. Li, C. Xing, Y.-C. Wu, and S. C. Chan, Timing estimation and resynchronization for amplify-and-forward communication systems," IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2218-2229, Apr. 2010.
[6] Q. Huang, M. Ghogho, J. Wei, and P. Ciblat, Practical timing and frequency synchronization for OFDM-based cooperative systems," IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3706-3716, Jul. 2010.
[7] Y. Yao and X. Dong, Multiple CFO mitigation in amplify-and-forward cooperative OFDM transmission," IEEE Trans. Commun., vol. 60, no. 12, pp. 3844-3854, Dec. 2012.
[8] A. A. Nasir, H. Mehrpouyan, S. Durrani, S. D. Blostein, R. A. Kennedy, and B. Ottersten, Transceiver design for distributed STBC based AF cooperative networks in the presence of timing and frequency osets," IEEE Trans. Signal Process., vol. 61, no. 12, pp. 3143-3158, Jun. 2013.
[9] S. Alamouti, A simple transmit diversity technique for wireless communications," IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[10] K.-P. Chou and J.-C. Lin, Disintegrated channel estimation in scalable lter-andforward relay network with IRI coordination," in Proc. IEEE Wireless Telecommunications Symposium (WTS 2015), New York City, USA, Apr. 15-17, 2015, pp. 1-6.
[11] K.-P. Chou, J.-C. Lin, and H. V. Poor, Disintegrated channel estimation in lterand-forward relay networks," IEEE Trans. Commun., vol. 64, no. 7, pp. 2835-2847, Jul. 2016.
[12] M. Malkawi and I. M. Kim, Hard/soft detection with limited CSI for multi-hop systems," IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3435-3441, Jul. 2009.
[13] P. Liu and I. M. Kim, Optimum/sub-optimum detectors for multi-branch dual-hop amplify-and-forward cooperative diversity networks with limited CSI," IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 78-85, Jan. 2010.
[14] Z. Peng, L.-C. Wang, W. Xu, and C. Zhao, Achievable rate analysis and feedback design for multiuser MIMO relay with imperfect CSI," IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 780-793, Feb. 2014.
[15] S. Han, S. Ahn, E. Oh, and E. Hong, Eect of channel-estimation error on BER performance in cooperative transmission," IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 2083-2088, May 2009.
[16] O. Amin, S. S. Ikki, and M. Uysal, On the performance analysis of multirelay cooperative diversity systems with channel estimation errors," IEEE Trans. Veh. Technol., vol. 60, no. 5, pp. 2050-2059, Jun. 2011.
[17] J.-C. Lin and H. V. Poor, Revisit on maximum ratio combining reception practically attained across correlated Nakagami-m branches," in Proc. IEEE Wireless Telecommunications Symposium (WTS 2015), New York City, USA, April 15-17, 2015.
[18] J.-C. Lin and H. V. Poor, A systematic approach to deriving the covariance matrix of correlated Nakagami-m fading channels," IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1612-1625, Feb. 2020.
[19] J.-C. Lin and H. V. Poor, Optimum combiner for spatially correlated Nakagami-m fading channels," IEEE Trans. Wireless Commun., under review.
[20] S. Haykin, Communication Systems, 4th ed. Hoboken, NJ, USA: Wiley, 2001.
[21] S. P. Lloyd, Least squares quantization in PCM," IEEE Trans. Inf. Theory, vol. IT-28, no. 2, pp. 129-137, Mar. 1982.
[22] M. Skonglund and G. Jongren, On the capacity of a multiple-antenna communication link with channel side information," IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 395-405, Apr. 2003.
[23] V. Lau, Y. Liu, and T.-A. Chen, On the design of MIMO block-fading channels with feedback-link capacity constraint," IEEE Trans. Commun., vol. 52, no. 1, pp. 62-70, Jan. 2004.
[24] K. Mukkavilli, A. Sabharwal, E. Erkip, and B. A. Aazhang, On beamforming with finite rate feedback in multiple antenna systems," IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2735-2747, Oct. 2003.
[25] D. Rajan, A. Sabharwal, and B. A. Aazhang, Outage behavior with delay and CSIT," in Proc. IEEE Int. Conf. Commun., Jun. 2004, pp. 578-582.
[26] A. Hjrungnes and D. Gesbert, Precoding of orthogonal space-time block codes in arbitrarily correlated MIMO channels: Iterative and closed-form solutions," IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 1072-1082, Mar. 2007.
[27] S. Zhou and B. Li, BER criterion and codebook construction for nite-rate precoded spatial multiplexing with linear receivers," IEEE Trans. Signal Process., vol. 54, no. 5, pp. 1653-1665, May 2006.
[28] D. J. Love, R. W. Heath, and T. Strohmer, Grassmannian beamforming for multipleinput multiple- output wireless systems," IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2735-2747, Oct. 2003.
[29] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, Ecient use of side information in multiple-antenna data transmission over fading channels," IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1423-1436, Oct. 1998.
[30] O. Amin, B. Gedik, and M. Uysal, Channel estimation for amplify-and-forward relaying: Cascaded against disintegrated estimators," IET Commun., vol. 4, pp. 1207-1216, Jul. 2010.
[31] Z. Fang, X. Zho, X. Bao and Z.Wang, Outage minimized relay selection with partial channel information," in Proc. IEEE Int. Conf. Acoust, Speech, Signal Process., Apr. 2009, pp. 2617-2620.
[32] M. M. Abdallah and H. C. Papadopoulos, Beamforming algorithms for information relaying in wireless sensor networks," IEEE Trans. Signal Process., vol. 56, pp. 4772-4784, Oct. 2008.
[33] E. Karamad, B. Khoshnevis, and R. S. Adve, Quantization and bit allocation for channel state feedback in relay-assisted wireless networks," IEEE Trans. Signal Process., vol. 61, no. 2, pp. 327-339, Jan. 2013.
[34] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ, USA: Wiley, 1991.
[35] R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation, and Noise, 6th ed. Hoboken, NJ, USA: Wiley, 2010.
[36] J. N. Laneman and G. W. Wornell, Energy ecient antenna sharing and relay for wireless networks," in Proc. IEEE Wireless Commun. Netw. Conf., Sep. 23{28, 2000, pp. 7-12.
[37] M. O. Hasna and M. S. Alouini, A performance study of dual-hop transmissions with xed gain relays," IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1963-1968, Nov. 2004.
[38] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York, NY, USA:Dover, 1970.
[39] P. A. Anghel and M. Kaveh, Exact symbol error probability of a cooperative network in a Rayleigh- fading environment," IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1416-1421, Sep. 2004.
[40] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (3GPP TS 36.101 version 10.3.0 Release 10), 3GPP Std. v10.3.0, 2011.
[41] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels. Hoboken, NJ, USA: Wiley, 2000.
[42] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Prducts. New York, NY, USA: Academic, 2007.
[43] B. P. Lathi and Z. Ding, Modern Digital and Analog Communication Systems, 4th ed. London, U.K.: Oxford Univ. Press, 2010.
[44] W. C. Jakes, Microwave Mobile Communications. New York, NY, USA: Wiley, 1974.
[45] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge, U.K.: Cambridge Univ. Press, 2011.
[46] M.-L. Ku, W. Li, Y. Chen, and K. J. R. Liu, Advances in energy harvesting communications: past,present, and future challenges," IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1384-1412, 2016.
[47] M. Puterman, Markov Decision Process-Discrete Stochastic Dynamic Programming.
John Wiley and Sons, 1994.
[48] M.-L. Ku, Y. Chen, and K. J. R. Liu, Data-driven stochastic transmission policies for energy harvesting sensor communications," IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1505-1520, Aug. 2015.
[49] H. S. Wang, N. Moayeri, Finite-state Markov channel-a useful model for radio communication channels," IEEE Trans. Wireless Commun., vol.44, no.1, pp. 163-171, Feb. 1995.
[50] O. Ozel, K.Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, Transmission with energy harvesting nodes in fading wireless channels optimal policies," IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732-1743, Sep. 2011.
[51] Y. K. Tan and S. K. Panda, Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes," IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4424{4435, Sep. 2011.
[52] W. S. Wang, T. O′Donnell, N. Wang, M. Hayes, B. O′Flynn, and C. O′Mathuna, Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems," ACM J. Emerg. Technol. Comput. Syst., vol. 6, no. 2, pp. 118, Jun. 2010.
[53] M.-L. Ku, W. Li, Y. Chen, and K. J. R. Liu, On energy harvesting gain and diversity analysis in cooperative communications," IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2641-2657, Dec. 2015.
[54] W. Li, M.-L. Ku, Y. Chen, and K. J. R. Liu, On outage probability for two-way relay networks with stochastic energy harvesting," IEEE Trans. Commun., vol. 64, no. 5, pp. 1901-1915, May 2016.
[55] A. Sultan, Sensing and transmit energy optimization for an energy harvesting cognitive radio," IEEE Wireless Commun. Lett., vol. 1, no. 5, pp. 500-503, Oct. 2012.
[56] S. Park, and D. Hong Achievable throughput of energy harvesting cognitive radio networks," IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 1010-1022, Feb. 2014.
[57] J. Yang, O. Ozel, and S. Ulukus, Broadcasting with an energy harvesting rechargeable transmitter," IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 571-583, Feb. 2012.
[58] O. Ozel, J. Yang, and U. Sennur, Optimal broadcast scheduling for an energy harvesting rechargeable transmitter with a nite capacity battery," IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 2193-2203, Jun. 2012.
[59] Y. Mao, Y. Luo, J. Zhang, and K. B. Letaief, Energy harvesting small cell networks: feasibility, deployment, and operation," IEEE Commun. Mag., vol. 53, no. 6, pp. 94-101, Jun. 2015.
[60] M. A. Kishk and H. S. Dhillon, Joint uplink and downlink coverage analysis of cellular-based RF-powered IoT network," IEEE Trans. Green Commun. Netw., vol. 2, no. 2, pp. 446-459, Jun. 2018.
[61] Y. Wu, X. Yang, L. P. Qian, H. Zhou, X. Shen, and M. K. Awad, Optimal dual connectivity trac ooading in energy-harvesting small-cell networks," IEEE Trans. Green Commun. Netw., vol. 2, no. 4, pp. 1041-1058, Dec. 2018.
[62] F. A. Aoudia, M. Gautier, and O. Berder, RLMan: An energy manager based on reinforcement learning for energy harvesting wireless sensor networks," IEEE Trans. Green Commun. Netw., vol. 2, no. 2, pp. 408-417, Jun. 2018.
[63] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, Deep deterministic policy gradient (DDPG)-based energy harvesting wireless communications," IEEE Internet Things J., vol. 6, no. 5, pp. 8577-8588, Oct. 2019.
[64] H. Mahdavi-Doost and R. D. Yates, Energy harvesting receivers: Finite battery capacity," in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2013.
[65] R. D. Yates and H. Mahdavi-Doost, Energy harvesting receivers: packet sampling and decoding policies," IEEE J. Sel. Areas Commun., vol. 33, no. 3, pp. 558-570, Mar. 2015.
[66] H. Mahdavi-Doost and R. D. Yates, Fading channels in energy harvesting receivers," in Proc. Conf. Inf. Sci. Syst., Mar. 2014.
[67] Z. W. Ni and M. Motani, Online policies for energy harvesting receivers with timeswitching architectures," IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1233-1246, Feb. 2019.
[68] A. Arafa, A. Baknina, and S. Ulukus, Energy harvesting two-way channel with decoding costs," in Proc. IEEE ICC, May 2016.
[69] K. Tutuncuoglu and A. Yener, Communicating with energy harvesting transmitters and receivers," in Proc. UCSD Inf. Theory Appl. Workshop, Feb. 2012.
[70] S. Zhou, T. Chen, W. Chen, and Z. Niu, Outage minimization for a fading wireless link with energy harvesting transmitter and receiver," IEEE J. Sel. Areas Commun., vol. 33, no. 3, pp. 496-511, Mar. 2015.
[71] A. Arafa and S. Ulukus, Optimal policies for wireless networks energy harvesting transmitters and receivers: Eects of decoding costs," IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2611-2625, Dec. 2015.
[72] M. K. Sharma and C. R. Murthy, Packet drop probability analysis of dual energy harvesting links with retransmission," IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3646-3660, Dec. 2016.
[73] M. K. Sharma and C. R. Murthy, On the design of dual energy harvesting communication links with retransmission," IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 4079-4093, Jun. 2017.
[74] M. Abedi and M. J. Emadi, Cooperative power management in energy harvesting communication systems in presence of a helper," IEEE Trans. Green Commun. Netw., vol. 3, no. 1, pp. 147-158, Mar. 2019.
[75] A. Arafa, A. Baknina, and S. Ulukus, Energy harvesting two-way channels with decoding and processing costs," IEEE Trans. Green Commun. Netw., vol. 1, no. 1, pp. 3-16, Mar. 2017.
[76] N. R. E. Laboratory. (2012). Solar Radiation Resource Information [Online] Available:
http://www.nrel.gov/rredc
[77] N. Michelusi, L. Badia, and M. Zorzi, Optimal transmission policies for energy harvesting devices with limited state-of-charge knowledge," IEEE Trans. Commun., vol. 62, no. 11, pp. 3969-3982, Nov., 2014.
[78] W. Li, M.-L. Ku, Y. Chen, and K. J. R. Liu, On outage probability for stochastic energy harvesting communications in fading channels," IEEE Trans. Signal Process. Lett., vol. 22, no. 11, pp. 1893-1897, Nov. 2015.
[79] W. Li, M.-L. Ku, Y. Chen, Y. Wang, and Z. Liang, Transmission policy of two-way relay networks with multiple stochastic energy harvesting nodes," IEEE Access, vol. 7, no. 1, pp. 76967-76984, Dec. 2019.
[80] S. Sudevalayam and P. Kulkani, Energy harvesting sensor nodes: survey and implications," IEEE Commun. Surveys Tuts., vol.13, no.3, pp. 443-461, 2011.
[81] W. C. Jakes, Microwave Mobile Communications. New York, NY, USA: Wiley, 1974.
[82] A. J. Paulraj, D. A. Gore, R. U. Nadar, and H. Bolcskei, An overview of MIMO communications - a key to gigabit wireless," Proc. IEEE, vol. 92, no. 2, pp. 198-218, Feb. 2004.
[83] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, Capacity limits of MIMO channels," IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684-702, Jun. 2003.
[84] A. Sendonaris, E. Erkip, and B. Aazhang, User cooperation diversity, part I: system description," IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1938, Nov. 2003.
[85] |||, User cooperation diversity, part II: implementation aspects and performance analysis," IEEE Trans. Commun., vol. 51, no. 11, pp. 1939-1948, Nov. 2003.
[86] G. J. Foschini and M. Gans, On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998.
[87] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, Cooperative diversity in wireless networks: ecient protocols and outage behavior," IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[88] G. Kramer, M. Gastpar, and P. Gupta, Cooperative strategies and capacity theorems for relay networks," IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3037-3063, Sep. 2005.
[89] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia, Coded cooperation in wireless communications: space-time transmission and iterative decoding," IEEE Trans. Signal Process., vol. 52, no. 2, pp. 362-371, Jan. 2004.
[90] C. Han, T. Harrold, S. Armour, I. Krikidis, S. Videv, P. Grant, H. Haas, J. Thompson, I. Ku, C.-X. Wang, T.A. Le, M. Nakhai, J. Zhang, and L. Hanzo, Green radio: radio techniques to enable energy-ecient networks," IEEE Commun. Mag., vol. 49, no. 6, pp. 46-54, Jun. 2011.
[91] G. Y. Li, Z. Xu, C. Xiong, C. Yang, S. Chang, Y. Chen, and S. Xu, Energy-ecient wireless communications: tutorial, survey, and open issues," IEEE Wireless Commun. Mag., vol. 18, no. 6, pp. 28-35, Dec. 2011.
[92] J. A. Paradiso and T. Starner, Energy scavenging for mobile and wireless electronics," IEEE Pervasive Comput., vol. 4, no. 1, pp. 18-27, 2005.
[93] R. K. Sathiendran, R. R. Sekaran, B. Chandar, and B. S. A. G. Prasad, Wind energy harvesting system powered wireless sensor networks for structural health monitoring," in Proc. IEEE Int. Conf. Circuit Power Compt. Technol., , 2014, pp. 523-526.
[94] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Energy harvesting from human and machine motion for wireless electronic devices," Proc. IEEE, vol. 96, no. 9, pp. 1457-1486, Sep. 2008.
[95] S. Kim, et al., Ambient RF energy-harvesting technologies for selfsustainable standalone wireless sensor platforms," Proc. IEEE, vol. 102, no. 11, pp. 1649-1666, Nov. 2014.
[96] I. Krikidis, S. Timotheou, S. Nikolaou, Z. Gan, D. W. K. Ng, and R. Schober, Simultaneous wireless information and power transfer in modern communication systems," IEEE Commun. Mag., vol. 52, no. 11, pp. 104-110, Nov. 2014.
[97] K. Huang and X. Zhou, Cutting the last wires for mobile communications by microwave power transfer," IEEE Commun. Mag., vol. 53, no. 6, pp. 86-93, Jun. 2015.
[98] M. Tacca, P. Monti, and A. Fumagalli, Cooperative and reliable ARQ protocols for energy harvesting wireless sensor nodes," IEEE Trans. Wireless Commun., vol. 6, no.7, pp. 2519-2529, Jul. 2007.
[99] S. Reddy and C. R. Murthy, Prole-based load scheduling in wireless energy harvesting sensors for data rate maximization," in Proc. IEEE Int. Conf. Commun., 2010, pp. 1-5.
[100] Z. Wang, A. Tajer, and X. Wang, Communication of energy harvesting tags," IEEE Trans. Commun., vol. 60, no. 4, pp. 1159-1166, Apr. 2012.
[101] N. Michelusi, K. Stamatiou, and M. Zorzi, Transmission policies for energy harvesting sensors with time-correlated energy supply," IEEE Trans. Commun., vol. 61, no. 7, pp. 2988-3001, Jul. 2013.
[102] C. K. Ho, P. D. Khoa, and P. C. Ming, Markovian models for harvested energy in wireless communications," in IEEE Int. Conf. Commun. Syst., 2010, pp. 311-315.
[103] NREL. (2012, Feb.). Solar radiation resource information, Golden, CO, USA. [Online].
Available: http://www.nrel.gov/rredc/.
[104] J.-C. Lin, H.-K. Chang, M.-L. Ku, and H. V. Poor, Impact of imperfect source-torelay CSI in amplify-and-forward relay networks," IEEE Trans. Veh. Technol., vol. 66, iss. 6, pp. 5056-5069, Jun. 2017.
[105] H.-K. Chang, M.-L. Ku, and J.-C. Lin, On Stochastic Link and Energy Scheduling for Energy Harvesting Bidirectional Communications," IEEE Access, Vol. 8, No. 1, pp.20129-20145, 2020. |